|
Physics 2012
Theory of the Fermi Arcs, the Pseudogap, $T_c$ and the Anisotropy in k-space of Cuprate SuperconductorsDOI: 10.1209/0295-5075/99/37003 Abstract: The appearance of the Fermi arcs or gapless regions at the nodes of the Fermi surface just above the critical temperature is described through self-consistent calculations in an electronic disordered medium. We develop a model for cuprate superconductors based on an array of Josephson junctions formed by grains of inhomogeneous electronic density derived from a phase separation transition. This approach provides physical insights to the most important properties of these materials like the pseudogap phase as forming by the onset of local (intragrain) superconducting amplitudes and the zero resistivity critical temperature $T_c$ due to phase coherence activated by Josephson coupling. The formation of the Fermi arcs and the dichotomy in k-space follows from the direction dependence of the junctions tunneling current on the d-wave symmetry on the $CuO_2$ planes. We show that this semi-phenomenological approach reproduces also the main future of the cuprates phase diagram.
|