|
Physics 2012
Observation of a rotational transition in trapped and sympathetically cooled molecular ionsDOI: 10.1103/PhysRevA.85.032519 Abstract: We demonstrate rotational excitation of molecular ions that are sympathetically cooled by laser-cooled atomic ions to a temperature as low as ca. 10 mK. The molecular hydrogen ions HD+ and the fundamental rotational transition $(v=0,\, N=0)\rightarrow(v'=0,\, N'=1)$ at 1.3 THz, the most fundamental dipole-allowed rotational transition of any molecule, are used as a test case. This transition is here observed for the first time directly. Rotational laser cooling was employed in order to increase the signal, and resonance-enhanced multiphoton dissociation was used as detection method. The black-body-radiation-induced rotational excitation is also observed. The extension of the method to other molecular species is briefly discussed.
|