全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Inflationary Magnetogenesis without the Strong Coupling Problem II: Constraints from CMB anisotropies and B-modes

DOI: 10.1088/1475-7516/2014/06/053

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent observational claims of magnetic fields stronger than $10^{-16}$ G in the extragalactic medium motivate a new look for their origin in the inflationary magnetogenesis models. In this work we shall review the constraints on the simplest gauge invariant model $f^2(\phi)F_{\mu \nu}F^{\mu \nu}$ of inflationary magnetogenesis, and show that in the optimal region of parameter space the anisotropic constraints coming from the induced bispectrum, due to the generated electromagnetic fields, yield the strongest constraints. In this model, only a very fine tuned scenario at an energy scale of inflation as low as $10^{-2}$ GeV can explain the observations of void magnetic fields. These findings are consistent with the recently derived model independent constraints. However, if the detection of primordial tensor modes by BICEP2 is confirmed, the possibility of low scale inflation is excluded. Assuming the validity of the BICEP2 claim of a tensor-to-scalar ratio $r=0.2^{+0.07}_{-0.05}$, we provide the updated constraints on inflationary magnetogenesis. On the Mpc scale, the maximal allowed magnetic field strength from inflation is less than $10^{-30}$ G.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133