全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Super and massive AGB stars - III. Nucleosynthesis in metal-poor and very metal-poor stars - Z=0.001 and 0.0001

DOI: 10.1093/mnras/stu571

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a new grid of stellar models and nucleosynthetic yields for super-AGB stars with metallicities Z=0.001 and 0.0001, applicable for use within galactic chemical evolution models. Contrary to more metal rich stars where hot bottom burning is the main driver of the surface composition, in these lower metallicity models the effect of third dredge-up and corrosive second dredge-up also have a strong impact on the yields. These metal-poor and very metal-poor super-AGB stars create large amounts of He4, C13 and N14, as well as the heavy magnesium isotopes Mg25 and Mg26. There is a transition in yield trends at metallicity Z approximately 0.001, below which we find positive yields of C12, O16, N15, Al27 and Si28, which is not the case for higher metallicities. We explore the large uncertainties derived from wind prescriptions in super-AGB stars, finding approximately 2 orders of magnitude difference in yields of Ne22, Na23, Mg24,25,26, Al27 and our s-process proxy isotope g. We find inclusion of variable composition low temperature molecular opacities is only critical for super-AGB stars of metallicities below Z approximately 0.001. We analyze our results, and those in the literature, to address the question: Are super-AGB stars the polluters responsible for extreme population in the globular cluster NGC 2808? Our results, as well as those from previous studies, seem unable to satisfactorily match the extreme population in this globular cluster.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133