全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Extreme Events in Nonlinear Lattices

DOI: 10.1142/9789814602136_0003

Full-Text   Cite this paper   Add to My Lib

Abstract:

The spatiotemporal complexity induced by perturbed initial excitations through the development of modulational instability in nonlinear lattices with or without disorder, may lead to the formation of very high amplitude, localized transient structures that can be named as extreme events. We analyze the statistics of the appearance of these collective events in two different universal lattice models; a one-dimensional nonlinear model that interpolates between the integrable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schr\"odinger (DNLS) equation, and a two-dimensional disordered DNLS equation. In both cases, extreme events arise in the form of discrete rogue waves as a result of nonlinear interaction and rapid coalescence between mobile discrete breathers. In the former model, we find power-law dependence of the wave amplitude distribution and significant probability for the appearance of extreme events close to the integrable limit. In the latter model, more importantly, we find a transition in the the return time probability of extreme events from exponential to power-law regime. Weak nonlinearity and moderate levels of disorder, corresponding to weak chaos regime, favour the appearance of extreme events in that case.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133