全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Prediction of grain boundary structure and energy by machine learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

Grain boundaries dramatically affect the properties of polycrystalline materials because of differences in atomic configuration. To fully understand the relationship between grain boundaries and materials properties, systematic studies of the grain boundary atomic structure are crucial. However, such studies are limited by the extensive computation necessary to determine the structure of a single grain boundary. If the structure could be predicted with more efficient computation, the understanding of the grain boundary would be accelerated significantly. Here, we predict grain boundary structures and energies using a machine-learning technique. Training data for non-linear regression of four symmetric-tilt grain boundaries of copper were used. The results of the regression analysis were used to predict 12 other grain boundary structures. The method accurately predicts both the structures and energies of grain boundaries. The method presented in this study is very general and can be utilized in understanding many complex interfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133