全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Digital Backpropagation in the Nonlinear Fourier Domain

DOI: 10.1109/SPAWC.2015.7227077

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the nonlinear Schr\"odinger equation can be reverted analytically in the nonlinear Fourier domain through simple phase-shifts, there is no need to discretize the spatial domain. The proposed algorithm requires only $\mathcal{O}(D\log^{2}D)$ floating point operations to backpropagate a signal given by $D$ samples, independently of the fiber's length, and is therefore highly promising for real-time implementations. The merits of this new approach are illustrated through numerical simulations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133