|
Physics 2004
Metal-Semiconductor Transition in Armchair Carbon Nanotubes by Symmetry BreakingDOI: 10.1063/1.1811792 Abstract: The electronic band structure of armchair carbon nanotubes may be considerably modified by potentials with angular dependence. Different angular modes V_q ~ cos(q*theta) have been studied within a tight-binding scheme. Using symmetry arguments, we demonstrate a bandgap opening in these metallic nanotubes when certain selection rules are satisfied for both potential and nanotube structure. We estimate the bandgap opening as a function of both the external potential strength and the nanotube radius and suggest an effective mechanism of metal-semiconductor transition by combination of different forms of perturbations.
|