|
Physics 2000
Free cooling of particles with rotational degrees of freedomAbstract: Free cooling of granular materials is analyzed on the basis of a pseudo-Liouville operator. Exchange of translational and rotational energy requires surface roughness for spherical grains, but occurs for non-spherical grains, like needles, even if they are perfectly smooth. Based on the assumption of a homogeneous cooling state, we derive an approximate analytical theory. It predicts that cooling of both rough spheres and smooth needles proceeds in two stages: An exponentially fast decay to a state with stationary ratio of translational and rotational energy and a subsequent algebraic decay of the total energy. These results are confirmed by simulations for large systems of moderate density. For higher densities, we observe deviations from the homogeneous state as well as large-scale structures in the velocity field. We study non-Gaussian distributions of the momenta perturbatively and observe a breakdown of the expansion for particular values of surface roughness and normal restitution.
|