全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2000 

Quantized reduction as a tensor product

Full-Text   Cite this paper   Add to My Lib

Abstract:

Symplectic reduction is reinterpreted as the composition of arrows in the category of integrable Poisson manifolds, whose arrows are isomorphism classes of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category. This description paves the way for the quantization of the classical reduction procedure, which is based on the formal analogy between dual pairs of Poisson manifolds and Hilbert bimodules over C*-algebras, as well as with correspondences between von Neumann algebras. Further analogies are drawn with categories of groupoids (of algebraic, measured, Lie, and symplectic type). In all cases, the arrows are isomorphism classes of appropriate bimodules, and their composition may be seen as a tensor product. Hence in suitable categories reduction is simply composition of arrows, and Morita equivalence is isomorphism of objects.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133