全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Higher-order Melnikov functions for single-DOF mechanical oscillators: theoretical treatment and applications

DOI: 10.1155/s1024123x04310045

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Melnikov analysis of single-degree-of-freedom (DOF) oscillators is performed by taking into account the first (classical) and higher-order Melnikov functions, by considering Poincaré sections nonorthogonal to the flux, and by explicitly determining both the distance between perturbed and unperturbed manifolds (“one-half” Melnikov functions) and the distance between perturbed stable and unstable manifolds (“full” Melnikov function). The analysis is developed in an abstract framework, and a recursive formula for computing the Melnikov functions is obtained. These results are then applied to various mechanical systems. Softening versus hardening stiffness and homoclinic versus heteroclinic bifurcations are considered, and the influence of higher-order terms is investigated in depth. It is shown that the classical (first-order) Melnikov analysis is practically inaccurate at least for small and large excitation frequencies, in correspondence to degenerate homo/heteroclinic bifurcations, and in the case of generic periodic excitations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133