全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1997 

Phase Transitions in the Multicomponent Widom-Rowlinson Model and in Hard Cubes on the BCC--Lattice

DOI: 10.1016/S0378-4371(97)00245-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use Monte Carlo techniques and analytical methods to study the phase diagram of the M--component Widom-Rowlinson model on the bcc-lattice: there are M species all with the same fugacity z and a nearest neighbor hard core exclusion between unlike particles. Simulations show that for M greater or equal 3 there is a ``crystal phase'' for z lying between z_c(M) and z_d(M) while for z > z_d(M) there are M demixed phases each consisting mostly of one species. For M=2 there is a direct second order transition from the gas phase to the demixed phase while for M greater or equal 3 the transition at z_d(M) appears to be first order putting it in the Potts model universality class. For M large, Pirogov-Sinai theory gives z_d(M) ~ M-2+2/(3M^2) + ... . In the crystal phase the particles preferentially occupy one of the sublattices, independent of species, i.e. spatial symmetry but not particle symmetry is broken. For M to infinity this transition approaches that of the one component hard cube gas with fugacity y = zM. We find by direct simulations of such a system a transition at y_c ~ 0.71 which is consistent with the simulation z_c(M) for large M. This transition appears to be always of the Ising type.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133