全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Nonperturbative Quantum Physics from Low-Order Perturbation Theory

DOI: 10.1103/PhysRevLett.115.143001

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built in analytic structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel-consistent and dramatically outperform widely used Pad\'e and Borel-Pad\'e approaches, even for rather large values of the coupling constant.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133