全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

DOI: 10.1021/nl502684j

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here, we show broadband coherent terahertz emission, ranging from about 0.1-4 THz, in epitaxial graphene under femtosecond optical excitation, induced by a dynamical photon drag current. We demonstrate that, in contrast to most optical processes in graphene, the next-nearest-neighbor couplings as well as the distinct electron-hole dynamics are of paramount importance in this effect. Our results indicate that dynamical photon drag effect can provide emission up to 60 THz opening new routes for the generation of ultra-broadband terahertz pulses at room temperature.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133