|
Physics 2014
Precise estimation of critical exponents from real-space renormalization group analysisAbstract: We develop a novel real-space renormalization group (RG) scheme which accurately estimates correlation length exponent $\nu$ near criticality of higher-dimensional quantum Ising and Potts models in a transverse field. Our method is remarkably simple (often analytical), grouping only a few spins into a block spin so that renormalized Hamiltonian has a closed form. A previous difficulty of spatial anisotropy and unwanted terms is avoided by incorporating rotational invariance and internal $\mathbb{Z}_q$ symmetries of the Hamiltonian. By applying this scheme to the (2+1)-dim Ising model on a triangular lattice and solving an analytical RG equation, we obtain $\nu\approx 0.6300$. This value is within statistical errors of the current best Monte-Carlo result, 25th-order high-temperature series expansions, $\phi^4$-theory estimation which considers up to seven-loop corrections and experiments performed in low-Earth orbits. We also apply the scheme to higher-dimensional Potts models for which ordinary Monte-Carlo methods are not effective due to strong hysteresis and suppression of quantum fluctuation in a weak first-order phase transition.
|