|
Physics 2014
Multifunctional graphene optical modulator and photodetector integrated on silicon waveguidesDOI: 10.1021/nl500712u Abstract: For optical communication, information is converted between optical and electrical signal domains at a high rate. The devices to achieve such a conversion are various types of electro-optical modulators and photodetectors. These two types of optoelectronic devices, equally important, require different materials and consequently it has been challenging to realize both using a single material combination, especially in a way that can be integrated on the ubiquitous silicon platform. Graphene, with its gapless band structure, stands out as a unique optoelectronic material that allows both photodetection and optical modulation. Here, we demonstrate a single graphene-based device that simultaneously provides both efficient optical modulation and photodetection. The graphene device is integrated on a silicon waveguide and is tunable with a gate made from another layer of graphene to achieve near-infrared photodetection responsivity of 57 mA/W and modulation depth of 64%. This novel multifunctional device may lead to many unprecedented optoelectronic applications.
|