全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

DOI: 10.1016/j.energy.2014.05.067

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resource quality and fluctuation patterns. LCOE vary by up to 35% due to regional conditions, and LCOE-optimal mixes turn out to largely follow resource quality. A transmission network enhancement among FERC regions is constructed to transfer high penetrations of solar and wind across FERC boundaries, based on a novel least-cost optimization approach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133