|
Physics 2014
On a periodicity measure and superoscillationsAbstract: The phenomenon of superoscillation, where band limited signals can oscillate over some time period with a frequency higher than the band limit, is not only very interesting but it also seems to offer many practical applications. The first reason is that the superoscillation frequency can be exploited to perform tasks beyond the limits imposed by the lower bandwidth of the signal. The second reason is that it is generic and applies to any wave form, be it optical, electrical, sonic, or quantum mechanical. For practical applications, it is important to overcome two problems. The first problem is that an overwhelming proportion of the energy goes into the non superoscillating part of the signal. The second problem is the control of the shape of the superoscillating part of the signal. The first problem has been recently addressed by optimization of the super oscillation yield, the ratio of the energy in the superoscillations to the total energy of the signal. The second problem may arise when the superoscillation, is to mimic a high frequency purely perodic signal. This may be required, for example, when a superoscillating force is to drive a harmonic oscillator at a high resonance frequency. In this paper the degree of periodicity of a signal is defined and applied to some yield optimized superoscillating signals.
|