全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2000 

Gravitational Wavetrains in the Quasi-Equilibrium Approximation: A Model Problem in Scalar Gravitation

DOI: 10.1103/PhysRevD.63.064035

Full-Text   Cite this paper   Add to My Lib

Abstract:

A quasi-equilibrium (QE) computational scheme was recently developed in general relativity to calculate the complete gravitational wavetrain emitted during the inspiral phase of compact binaries. The QE method exploits the fact that the the gravitational radiation inspiral timescale is much longer than the orbital period everywhere outside the ISCO. Here we demonstrate the validity and advantages of the QE scheme by solving a model problem in relativistic scalar gravitation theory. By adopting scalar gravitation, we are able to numerically track without approximation the damping of a simple, quasi-periodic radiating system (an oscillating spherical matter shell) to final equilibrium, and then use the exact numerical results to calibrate the QE approximation method. In particular, we calculate the emitted gravitational wavetrain three different ways: by integrating the exact coupled dynamical field and matter equations, by using the scalar-wave monopole approximation formula (corresponding to the quadrupole formula in general relativity), and by adopting the QE scheme. We find that the monopole formula works well for weak field cases, but fails when the fields become even moderately strong. By contrast, the QE scheme remains quite reliable for moderately strong fields, and begins to breakdown only for ultra-strong fields. The QE scheme thus provides a promising technique to construct the complete wavetrain from binary inspiral outside the ISCO, where the gravitational fields are strong, but where the computational resources required to follow the system for more than a few orbits by direct numerical integration of the exact equations are prohibitive.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133