全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2000 

Quantum-mechanical tunneling: differential operators, zeta-functions and determinants

DOI: 10.1002/1521-3978(200203)50:3/4<405::AID-PROP405>3.0.CO;2-9

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider in detail the quantum-mechanical problem associated with the motion of a one-dimensional particle under the action of the double-well potential. Our main tool will be the euclidean (imaginary time) version of the path-integral method. Once we perform the Wick rotation, the euclidean equation of motion is the same as the usual one for the point particle in real time, except that the potential at issue is turned upside down. In doing so, our double-well potential becomes a two-humped potential. As required by the semiclassical approximation we may study the quadratic fluctuations over the instanton which represents in this context the localised finite-action solutions of the euclidean equation of motion. The determinants of the quadratic differential operators are evaluated by means of the zeta-function method. We write in closed form the eigenfunctions as well as the energy eigenvalues corresponding to such operators by using the shape-invariance symmetry. The effect of the multi-instantons configurations is also included in this approach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133