全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Thermophoresis of an Antiferromagnetic Soliton

DOI: 10.1103/PhysRevB.92.020402

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study dynamics of an antiferromagnetic soliton under a temperature gradient. To this end, we start by phenomenologically constructing the stochastic Landau-Lifshitz-Gilbert equation for an antiferromagnet with the aid of the fluctuation-dissipation theorem. We then derive the Langevin equation for the soliton's center of mass by the collective coordinate approach. An antiferromagentic soliton behaves as a classical massive particle immersed in a viscous medium. By considering a thermodynamic ensemble of solitons, we obtain the Fokker-Planck equation, from which we extract the average drift velocity of a soliton. The diffusion coefficient is inversely proportional to a small damping constant $\alpha$, which can yield a drift velocity of tens of m/s under a temperature gradient of $1$ K/mm for a domain wall in an easy-axis antiferromagnetic wire with $\alpha \sim 10^{-4}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133