|
Physics 2015
Explicit inclusion of electronic correlation effects in molecular dynamicsAbstract: We design a quantum molecular dynamics method for strongly correlated electron metals. The strong electronic correlation effects are treated within a real-space version of the Gutzwiller variational approximation (GA), which is suitable for the inhomogeneity inherent in the process of quantum molecular dynamics (MD) simulation. We also propose an efficient algorithm based on the second-moment approximation to the electronic density of states for the search of the optimal variation parameters, from which the effective renormalized interatomic MD potentials are fully determined. By considering a minimal one-correlated-orbital Anderson many-particle model based on tight-binding hopping integrals, this fast GA-MD method is benchmarked with that using exact diagonalization to solve the GA variational parameters. In the infinite damping limit, the efficiency and accuracy are illustrated. This novel method will open up an unprecedented opportunity enabling large-scale quantum MD simulations of strongly correlated electronic materials.
|