|
Physics 2015
Normal and anomalous diffusion of Brownian particles on disordered potentialsAbstract: In this work we study the transition from normal to anomalous diffusion of Brownian particles on disordered potentials. The potential model consists of a series of "potential hills" (defined on unit cell of constant length) whose heights are chosen randomly from a given distribution. We calculate the exact expression for the diffusion coefficient in the case of uncorrelated potentials for arbitrary distributions. We particularly show that when the potential heights have a Gaussian distribution (with zero mean and a finite variance) the diffusion of the particles is always normal. In contrast when the distribution of the potential heights are exponentially distributed we show that the diffusion coefficient vanishes when system is placed below a critical temperature. We calculate analytically the diffusion exponent for the anomalous (subdiffusive) phase by using the so-called "random trap model". We test our predictions by means of Langevin simulations obtaining good agreement within the accuracy of our numerical calculations.
|