全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2015 

Generalized raising and lowering operators for supersymmetric quantum mechanics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Supersymmetric quantum mechanics has many applications, and typically uses a raising and lowering operator formalism. For one dimensional problems, we show how such raising and lowering operators may be generalized to include an arbitrary function. As a result, the usual Rodrigues' formula of the theory of orthogonal polynomials may be recovered in special cases, and it may otherwise be generalized to incorporate an arbitrary function. We provide example generalized operators for several important classical orthogonal polynomials, including Chebyshev, Gegenbauer, and other polynomials. In particular, as concerns Legendre polynomials and associated Legendre functions, we supplement and generalize results of Bazeia and Das.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133