|
Physics 2014
Quantum vacuum photon-modes and superhydrophobicityDOI: 10.1103/PhysRevLett.114.024501 Abstract: Nanostructures are commonly used for developing superhydrophobic surfaces. However, available wetting theoretical models ignore the effect of vacuum photon-modes alteration on van der Waals forces and thus on hydrophobicity. Using first-principle calculations, we show that superhydrophibicity of nanostructured surfaces is dramatically enhanced by vacuum photon-modes tuning. As a case study, wetting contact angles of a water droplet above a polyethylene nanostructured surface are obtained from the interaction potential energy calculated as function of the droplet-surface separation distance. This new approach could pave the way for the design of novel superhydrophobic coatings.
|