A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. 1. Introduction The history of Painlevé equations is more than one century old. These are six second-order nonlinear irreducible equations that define new transcendental functions known as Painlevé Transcendents. These functions describe different physical processes and have been extensively used in both pure [1] and applied mathematics [2], along with theoretical physics [3]. For instance, Painlevé Transcendents are used in solutions to Korteweg-de Vries (KdV), cylindrical KdV and Bussinesq equations [4, 5], bifurcations in nonlinear non-integral models [6], matrix models of quantum gravity with continuous limits [7, 8], among others. The history, importance, and applications of Painlevé transcendents can be seen elsewhere [9, 10]. In recent publications, Painlevé equation-I (PE-I) is used in Tronquée [11] and hyperasymptotic [12] solutions, as well as in modeling the viscous shocks in Hele-shaw flow and Stokes phenomena [13]. Beside this, many researchers have employed PE-I in diverse fields of applied science and engineering [14–22]. In this article, our investigation is confined to find out solution of initial value problem (IVP) of nonlinear second-order PE-I, written in the following form: In the present study, the strength of feed forward artificial neural networks (ANNs) is exploited for approximate mathematical model of PE-I. The real strength of such model to solve the differential equations can be achieved by using modern stochastic solvers for optimization of weights based on particle swarm optimization (PSO) technique hybrid with local search
References
[1]
A. P. Bassom, P. A. Clarkson, and A. C. Hicks, “Numerical studies of the fourth Painlevé equation,” IMA Journal of Applied Mathematics, vol. 50, no. 2, pp. 167–139, 1993.
[2]
J. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999.
[3]
J. H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141–1199, 2006.
[4]
M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Studies in Applied Mathematics 4, SIAM, Philadelphia, Pa, USA, 1981.
[5]
M. Tajiri and S. Kawamoto, “Reduction of KdV and cylindrical KdV equations to Painlevé equation,” Journal of the Physical Society of Japan, vol. 51, no. 5, pp. 1678–1681, 1982.
[6]
R. Haberman, “Slowly varying jump and transition phenomena associated with algebraic bifurcation problems,” SIAM Journal on Applied Mathematics, vol. 37, no. 1, pp. 69–106, 1979.
[7]
A. S. Fokas, A. R. Its, and A. V. Kitaev, “Discrete Painlevé equations and their appearance in quantum gravity,” Communications in Mathematical Physics, vol. 142, no. 2, pp. 313–344, 1991.
[8]
A. S. Fokas, A. R. Its, and A. V. Kitaev, “Matrix models of two-dimensional quantum gravity and isomonodromic solutions of “Discrete Painlevé”equations,” Journal of Mathematical Sciences, vol. 73, no. 4, pp. 415–429, 1995.
[9]
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge University Press, 1991.
[10]
V. I. Gromak, I. Laine, and S. Shimomura, Painleve Differential Equations in the Complex Plane, Walter de Gruyter, New York, NY, USA, 2002.
[11]
D. Dai and L. Zhang, “On tronquée solutions of the first Painlevé hierarchy,” Journal of Mathematical Analysis and Applications, vol. 368, no. 2, pp. 393–399, 2010.
[12]
A. B. O. Daalhuis, “Hyperasymptotics for nonlinear odes ii. The first Painlevé equation and a second-order riccati equation,” Proceedings of the Royal Society A, vol. 461, no. 2062, pp. 3005–3021, 2005.
[13]
S. Y. Lee, R. Teodorescu, and P. Wiegmann, “Viscous shocks in hele-shaw flow and stokes phenomena of the Painlevé I transcendent,” Physica D, vol. 240, no. 13, pp. 1080–1091, 2011.
[14]
N. A. Kudryashov, “The first and second Painlevé equations of higher order and some relations between them,” Physics Letters, Section A, vol. 224, no. 6, pp. 353–360, 1997.
[15]
N. A. Kudryashov, “Amalgamations of the Painlevé equations,” Journal of Mathematical Physics, vol. 44, no. 12, pp. 6160–6178, 2003.
[16]
G. Cresswell and N. Joshi, “The discrete first, second and thirty-fourth Painlevé hierarchies,” Journal of Physics A, vol. 32, no. 4, pp. 655–669, 1999.
[17]
P. R. Gordoa and A. Pickering, “Nonisospectral scattering problems: a key to integrable hierarchies,” Journal of Mathematical Physics, vol. 40, no. 11, pp. 5749–5786, 1999.
[18]
U. Mu?an and F. Jrad, “Painlevé test and the first Painlevé hierarchy,” Journal of Physics A, vol. 32, no. 45, pp. 7933–7952, 1999.
[19]
U. Mugan and F. Jrad, “Painlevé test and higher order differential equations,” Journal of Nonlinear Mathematical Physics, vol. 9, no. 3, pp. 282–310, 2002.
[20]
B. Fornberg and J. A. C. Weideman, “A Numerical methodology for the Painlevé equations,” Journal of Computational Physics, vol. 230, no. 15, pp. 5957–5973, 2011.
[21]
N. A. Kudryashov, “Fourth-order analogies to the Painlevé equations,” Journal of Physics A, vol. 35, no. 21, pp. 4617–4632, 2002.
[22]
N. A. Kudeyashov, “One method for finding exact solutions of nonlinear differential equations,” Communications in Nonlinear Science and Numerical Simulations, vol. 17, no. 6, pp. 2248–2253, 2012.
[23]
H. Saidi, N. Khelil, S. Hassouni, and A. Zerarka, “Energy spectra of the Schr?dinger equation and the differential quadrature method: improvement of the solution using particle swarm optimization,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 559–566, 2006.
[24]
Z. Y. Lee, “Method of bilaterally bounded to solution blasius equation using particle swarm optimization,” Applied Mathematics and Computation, vol. 179, no. 2, pp. 779–786, 2006.
[25]
M. A. Z. Raja, I. M. Qureshi, and J. A. Khan, “Swarm Intelligent optimized neural networks for solving fractional differential equations,” International Journal of Innovative Computing, vol. 7, no. 11, pp. 6301–6318, 2011.
[26]
M. A. Z. Raja, J. A. Khan, and I. M. Qureshi, “Heuristic computational approach using swarm intelligence in solving fractional differential equations,” in Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference (GECCO'10), pp. 2023–2026, Portland, Oregon, July 2010.
[27]
M. A. Z. Raja, J. A. Khan, and I. M. Qureshi, “A new stochastic approach for solution of riccati differential equation of fractional order,” Annals of Mathematics and Artificial Intelligence, vol. 60, no. 3, pp. 229–250, 2010.
[28]
M. A. Z. Raja, J. A. Khan, and I. M. Qureshi, “Swarm intelligence optimized neural network for solving fractional order system of bagely-tervik equation,” Engineering Intelligent System, vol. 19, no. 1, pp. 41–51, 2011.
[29]
E. Hesameddini and A. Peyrovi, “The use of variational iteration method and homotopy perturbation method for Painlevé equation I,” Applied Mathematical Sciences, vol. 3, no. 37–40, pp. 1861–1871, 2009.
[30]
S. S. Behzadi, “Convergence of iterative methods for solving Painlevé equation,” Applied Mathematical Sciences, vol. 4, no. 30, pp. 1489–1507, 2010.
[31]
D. R. Parisi, M. C. Mariani, and M. A. Laborde, “Solving differential equations with unsupervised neural networks,” Chemical Engineering and Processing: Process Intensification, vol. 42, no. 8-9, pp. 715–721, 2003.
[32]
Y. Shirvany, M. Hayati, and R. Moradian, “Multilayer perceptron neural networks with novel unsupervised training method for numerical solution of the partial differential equations,” Applied Soft Computing Journal, vol. 9, no. 1, pp. 20–29, 2009.
[33]
J. A. Khan, M. A. Z. Raja, and I. M. Qureshi, “Numerical treatment of nonlinear emden-fowler equation using stochastic technique,” Annals of Mathematics and Artificial Intelligence, vol. 63, no. 2, pp. 185–207, 2011.
[34]
J. A. Khan, M. A. Z. Raja, and I. M. Qureshi, “Novel approach for van der pol oscillator on the continuous time domain,” Chinese Physics Letters, vol. 28, no. 11, Article ID 110205, 2011.
[35]
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia, 1995.
[36]
S. N. Sivanandam and P. Visalakshi, “Multiprocessor scheduling using hybrid particle swarm optimization with dynamically varying inertia,” International Journal of Computer Science & Applications, vol. 4, no. 3, pp. 95–106, 2007.
[37]
G. D. Li, S. Masuda, D. Yamaguchi, and M. Nagai, “The optimal GNN-PID control system using particle swarm optimization algorithm,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 10, pp. 3457–3469, 2009.
[38]
R. D. A. Araújo, “Swarm-based translation-invariant morphological prediction method for financial time series forecasting,” Information Sciences, vol. 180, no. 24, pp. 4784–4805, 2010.
[39]
X. Li and J. Wang, “A steganographic method based upon JPEG and particle swarm optimization algorithm,” Information Sciences, vol. 177, no. 15, pp. 3099–3109, 2007.
[40]
R. Ellahi, S. Abbasbandy, T. Hayat, and A. Zeeshan, “On comparison of series and numerical solutions for second Painlevé equation,” Numerical Methods for Partial Differential Equations, vol. 26, no. 5, pp. 1070–1078, 2010.
[41]
M. Dehghan and F. Shakeri, “The numerical solution of the second Painlevé equation,” Numerical Methods for Partial Differential Equations, vol. 25, no. 5, pp. 1238–1259, 2009.
[42]
E. Hesameddini, “Homotopy perturbation method for second Painlevé equation and comparisons with analytic continuation extension and chebishev series method,” International Mathematical Forum, vol. 5, no. 13, pp. 629–637, 2010.
[43]
J. H. He, “A short remark on fractional variational iteration method,” Physics Letters, vol. 375, no. 38, pp. 3362–3364, 2011.
[44]
M. Dehghan, S. A. Yousefi, and A. Lotfi, “The use of He's variational iteration method for solving the telegraph and fractional telegraph equations,” International Journal for Numerical Methods in Biomedical Engineering, vol. 27, no. 2, pp. 219–231, 2011.
[45]
A. M. Wazwaz and R. Rach, “Comparison of the adomian decomposition method and the variational iteration method for solving the lane-emden equations of the first and second kinds,” Kybernetes, vol. 40, no. 9, pp. 1305–1318, 2011.
[46]
J. H. He, “Notes on the optimal variational iteration method,” Applied Mathematics Letters, vol. 25, no. 10, pp. 1579–1581, 2012.
[47]
J. H. He, “Homotopy perturbation method with an auxiliary term,” Abstract and Applied Analysis, vol. 2012, Article ID 857612, 7 pages, 2012.
[48]
H. E. Ji-Huan, “A note on the homotopy perturbation method,” Thermal Science, vol. 14, no. 2, pp. 565–568, 2010.
[49]
T. ?zi? and A. Yildirim, “Comparison between adomian's method and He's homotopy perturbation method,” Computers and Mathematics with Applications, vol. 56, no. 5, pp. 1216–1224, 2008.
[50]
X. Feng, Y. He, and J. Meng, “Application of homotopy perturbation method to the bratu-type equations,” Topological Methods in Nonlinear Analysis, vol. 31, no. 2, pp. 243–252, 2008.