Sleep spindles are bursts of sleep electroencephalogram (EEG) quasirhythmic activity within the frequency band of 11–16?Hz, characterized by progressively increasing, then gradually decreasing amplitude. The purpose of the present study was to process sleep spindles with Independent Component Analysis (ICA) in order to investigate the possibility of extracting, through visual analysis of the spindle EEG and visual selection of Independent Components (ICs), spindle “components” (SCs) corresponding to separate EEG activity patterns during a spindle, and to investigate the intracranial current sources underlying these SCs. Current source analysis using Low-Resolution Brain Electromagnetic Tomography (LORETA) was applied to the original and the ICA-reconstructed EEGs. Results indicated that SCs can be extracted by reconstructing the EEG through back-projection of separate groups of ICs, based on a temporal and spectral analysis of ICs. The intracranial current sources related to the SCs were found to be spatially stable during the time evolution of the sleep spindles. 1. Introduction Sleep spindles are characteristic transient oscillations that appear on the electroencephalogram (EEG) during nonrapid eye movement (non-REM) sleep. They are characterized by progressively increasing, then gradually decreasing waveforms with frequencies ranging from 11 to 16?Hz. Sleep spindles characterize sleep onset, being one of the defining EEG waveforms of stage 2 sleep. They are affected by medication, aging, and brain pathology and may be involved in learning processes [1]. Analyses of scalp-recorded sleep spindles have demonstrated topographic distinction between two sleep spindle classes: “slow” spindles, with spectral peak frequency at around 12?Hz, and “fast” spindles, with spectral peak frequency at around 14?Hz. Slow spindles are more pronounced over frontal scalp electrodes, while fast spindles exhibit mainly parietal and central scalp distribution [2–5]. Independent Component Analysis (ICA) is a statistical technique used for solving the Blind Source or Signal Separation (BSS) problem [6, 7]. Suppose that data measured in an experiment are expressed through an n-dimensional vector , where is the number of measured data time samples. The BSS problem relates to recovering unknown “source” signals from their mixtures, that is, the measured data, without prior knowledge about the mixing mechanism producing the measured data. Sources and measured data are related through where is the unknown “mixing” matrix. It should be noted that, in the BSS context, the term
References
[1]
L. De Gennaro and M. Ferrara, “Sleep spindles: an overview,” Sleep Medicine Reviews, vol. 7, no. 5, pp. 423–440, 2003.
[2]
J. Zeitlhofer, G. Gruber, P. Anderer, S. Asenbaum, P. Schimicek, and B. Saletu, “Topographic distribution of sleep spindles in young healthy subjects,” Journal of Sleep Research, vol. 6, no. 3, pp. 149–155, 1997.
[3]
H. Tanaka, M. Hayashi, and T. Hori, “Topographical characteristics and principal component structure of the hypnagogic EEG,” Sleep, vol. 20, no. 7, pp. 523–534, 1997.
[4]
J. S. Zygierewicz, K. J. Blinowska, P. J. Durka, W. Szelenberger, S. Niemcewicz, and W. Androsiuk, “High resolution study of sleep spindles,” Clinical Neurophysiology, vol. 110, no. 12, pp. 2136–2147, 1999.
[5]
E. Werth, P. Achermann, D.-J. Dijk, and A. A. Borbely, “Spindle frequency activity in the sleep EEG: individual differences and topographic distribution,” Electroencephalography and Clinical Neurophysiology, vol. 103, no. 5, pp. 535–542, 1997.
[6]
A. Hyv?rinen, “Survey on independent component analysis,” Neural Computing Surveys, vol. 2, pp. 94–128, 1999.
[7]
C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiological Measurement, vol. 26, no. 1, pp. R15–R39, 2005.
[8]
P. Comon, “Independent component analysis, a new concept?” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.
[9]
S. Makeig, M. Westerfield, T.-P. Jung, et al., “Functionally independent components of the late positive event-related potential during visual spatial attention,” Journal of Neuroscience, vol. 19, no. 7, pp. 2665–2680, 1999.
[10]
J. Onton, M. Westerfield, J. Townsend, and S. Makeig, “Imaging human EEG dynamics using independent component analysis,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 808–822, 2006.
[11]
B. Jervis, S. Belal, K. Camilleri, et al., “The independent components of auditory P300 and CNV evoked potentials derived from single-trial recordings,” Physiological Measurement, vol. 28, no. 8, pp. 745–771, 2007.
[12]
E. M. Ventouras, I. Alevizos, P. Y. Ktonas, et al., “Independent components of sleep spindles,” in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology (EMBC '07), pp. 4002–4005, Lyon, France, August 2007.
[13]
C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave de Peralta, “EEG source imaging,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2195–2222, 2004.
[14]
R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain,” International Journal of Psychophysiology, vol. 18, no. 1, pp. 49–65, 1994.
[15]
R. D. Pascual-Marqui, D. Lehmann, T. Koenig, et al., “Low resolution brain electromagnetic tomography (LORETA) functional imaging in acute, neuroleptic-naive, first-episode, productive schizophrenia,” Psychiatry Research: Neuroimaging, vol. 90, no. 3, pp. 169–179, 1999.
[16]
J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, Thieme, New York, NY, USA, 1988.
[17]
P. Anderer, G. Klosch, G. Gruber, et al., “Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex,” Neuroscience, vol. 103, no. 3, pp. 581–592, 2001.
[18]
P. J. Durka, A. Matysiak, E. M. Montes, P. V. Sosa, and K. J. Blinowska, “Multichannel matching pursuit and EEG inverse solutions,” Journal of Neuroscience Methods, vol. 148, no. 1, pp. 49–59, 2005.
[19]
M. Nakamura, S. Uchida, T. Maehara, et al., “Sleep spindles in human prefrontal cortex: an electrocorticographic study,” Neuroscience Research, vol. 45, no. 4, pp. 419–427, 2003.
[20]
M. Steriade and F. Amzica, “Coalescence of sleep rhythms and their chronology in corticothalamic networks,” Sleep Research Online, vol. 1, no. 1, pp. 1–10, 1998.
[21]
V. Gumenyuk, T. Roth, J. E. Moran, et al., “Cortical locations of maximal spindle activity: magnetoencephalography (MEG) study,” Journal of Sleep Research, vol. 18, no. 2, pp. 245–253, 2009.
[22]
H. Merica and R. D. Fortune, “A neuronal transition probability model for the evolution of power in the sigma and delta frequency bands of sleep EEG,” Physiology and Behavior, vol. 62, no. 3, pp. 585–589, 1997.
[23]
V. Knoblauch, W. L. J. Martens, A. Wirz-Justice, and C. Cajochen, “Human sleep spindle characteristics after sleep deprivation,” Clinical Neurophysiology, vol. 114, no. 12, pp. 2258–2267, 2003.
[24]
L. De Gennaro, M. Ferrara, F. Vecchio, G. Curcio, and M. Bertini, “An electroencephalographic fingerprint of human sleep,” NeuroImage, vol. 26, no. 1, pp. 114–122, 2005.
[25]
A. Rechtschaffen and A. Kales, Eds., A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, Public Health Service, U.S. Government Printing Office, Washington, DC, USA, 1968.
[26]
A. Hyv?rinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626–634, 1999.
[27]
E. M. Ventouras, P. Y. Ktonas, H. Tsekou, T. Paparrigopoulos, I. Kalatzis, and C. R. Soldatos, “Slow and fast EEG sleep spindle component extraction using Independent Component Analysis,” in Proceedings of the 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE '08), Athens, Greece, October 2008.
[28]
A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural computation, vol. 7, no. 6, pp. 1129–1159, 1995.
[29]
J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE Proceedings F, vol. 140, no. 6, pp. 362–370, 1993.
[30]
A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, 2004.
[31]
A. Hyv?rinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.
[32]
R. Vigario, J. Sarela, and E. Oja, “Independent component analysis in wave decomposition of auditory evoked fields,” in Proceedings of the International Conference on Artificial Neural Networks (ICANN '98), pp. 287–292, Skovde, Sweden, 1998.
[33]
I. Manshanden, J. C. de Munck, N. R. Simon, and F. H. Lopes da Silva, “Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms,” Clinical Neurophysiology, vol. 113, no. 12, pp. 1937–1947, 2002.
[34]
R. Ferri, O. Bruni, S. Miano, and M. G. Terzano, “Topographic mapping of the spectral components of the cyclic alternating pattern (CAP),” Sleep Medicine, vol. 6, no. 1, pp. 29–36, 2005.
[35]
M. Toth, B. Faludi, J. Wackermann, J. Czopf, and I. Kondakor, “Characteristic changes in brain electrical activity due to chronic hypoxia in patients with obstructive sleep apnea syndrome (OSAS): a combined EEG study using LORETA and omega complexity,” Brain Topography, vol. 22, no. 3, pp. 185–190, 2009.
[36]
M. Saletu, P. Anderer, G. M. Saletu-Zyhlarz, M. Mandl, B. Saletu, and J. Zeitlhofer, “Modafinil improves information processing speed and increases energetic resources for orientation of attention in narcoleptics: double-blind, placebo-controlled ERP studies with low-resolution brain electromagnetic tomography (LORETA),” Sleep Medicine, vol. 10, no. 8, pp. 850–858, 2009.
[37]
A. Sinai and H. Pratt, “High-resolution time course of hemispheric dominance revealed by low-resolution electromagnetic tomography,” Clinical Neurophysiology, vol. 114, no. 7, pp. 1181–1188, 2003.
[38]
M. J. Herrmann, J. Rommler, A.-C. Ehlis, A. Heidrich, and A. J. Fallgatter, “Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe),” Cognitive Brain Research, vol. 20, no. 2, pp. 294–299, 2004.
[39]
R. Grave de Peralta Menendez, M. M. Murray, C. M. Michel, R. Martuzzi, and S. L. Gonzalez Andino, “Electrical neuroimaging based on biophysical constraints,” NeuroImage, vol. 21, no. 2, pp. 527–539, 2004.
[40]
C. Phillips, J. Mattout, M. D. Rugg, P. Maquet, and K. J. Friston, “An empirical Bayesian solution to the source reconstruction problem in EEG,” NeuroImage, vol. 24, no. 4, pp. 997–1011, 2005.