全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cross-Correlation of Motor Activity Signals from dc-Magnetoencephalography, Near-Infrared Spectroscopy, and Electromyography

DOI: 10.1155/2010/785279

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8?Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. 1. Introduction The methodologies to characterize neurovascular coupling in humans [1] can be separated at least into two categories. The first relies on two sequential measurements of the same subject and infers coupling parameters, the second performs multimodal synchronous measurements of neuronal and vascular effects, and the coupling is observed directly. The second methodology is technically more complicated, but the effect of a subject’s performance changing between two measurements is eliminated. Furthermore it allows to study the coupling on continuous time series, that is, without relying on epoch averages removing the variability between individual epochs. Results from these approaches complement the detailed findings for neurovascular coupling obtained from invasive studies in animals [2]. One possibility to study neurovascular coupling by synchronous measurements was described in [3–5] combining dc-magnetoencephalography (dcMEG) with time-resolved near-infrared spectroscopy (trNIRS) during intermittent finger movements. These synchronous measurements were so far limited to a bandwidth from DC to 0.4?Hz due to the modulation technique used for the dcMEG [4]. With the possibility to obtain unmodulated dcMEG in a magnetically extremely shielded room [6, 7] the bandwidth of the synchronous measurements is considerably increased; that is, slow signal changes close to DC and standard neuronal responses above 1?Hz can be recorded at the same time. To keep in line with earlier literature the term dcMEG is maintained, but it denotes here a bandwidth of the

References

[1]  O. J. Arthurs and S. Boniface, “How well do we understand the neural origins of the fMRI BOLD signal?” Trends in Neurosciences, vol. 25, no. 1, pp. 27–31, 2002.
[2]  N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Nature, vol. 412, no. 6843, pp. 150–157, 2001.
[3]  B.-M. Mackert, G. Wübbeler, S. Leistner, et al., “Neurovascular coupling analyzed non-invasively in the human brain,” NeuroReport, vol. 15, no. 1, pp. 63–66, 2004.
[4]  T. H. Sander, A. Liebert, B. M. Mackert, et al., “DC-magnetoencephalography and time-resolved near-infrared spectroscopy combined to study neuronal and vascular brain responses,” Physiological Measurement, vol. 28, no. 6, pp. 651–664, 2007.
[5]  B.-M. Mackert, S. Leistner, T. Sander, et al., “Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy,” NeuroImage, vol. 39, no. 3, pp. 979–986, 2008.
[6]  M. Burghoff, T. H. Sander, A. Schnabel, et al., “Dc magnetoencephalography: direct measurement in a magnetically extremely-well shielded room,” Applied Physics Letters, vol. 85, no. 25, pp. 6278–6280, 2004.
[7]  T. H. Sander, A. Liebert, M. Burghoff, H. Wabnitz, R. Macdonald, and L. Trahms, “Cross-correlation analysis of the correspondence between magnetoencephalographic and near-infrared cortical signals,” Methods of Information in Medicine, vol. 46, no. 2, pp. 164–168, 2007.
[8]  W. Ou, I. Nissil?, H. Radhakrishnan, D. A. Boas, M. S. H?m?l?inen, and M. A. Franceschini, “Study of neurovascular coupling in humans via simultaneous magnetoencephalography and diffuse optical imaging acquisition,” NeuroImage, vol. 46, no. 3, pp. 624–632, 2009.
[9]  C. S. Herrmann and S. Debener, “Simultaneous recording of EEG and BOLD responses: a historical perspective,” International Journal of Psychophysiology, vol. 67, no. 3, pp. 161–168, 2008.
[10]  P. Grosse, M. J. Cassidy, and P. Brown, “EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications,” Clinical Neurophysiology, vol. 113, no. 10, pp. 1523–1531, 2002.
[11]  A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source separation technique using second-order statistics,” IEEE Transactions on Signal Processing, vol. 45, no. 2, pp. 434–444, 1997.
[12]  A. Ziehe and K. R. Müller, “TDSEP—an efficient algorithm for blind separation using time structure,” in Proceedings of the 8th International Conference on Artificial Neural Networks (ICANN '98), L. Niklasson, et al., Ed., pp. 675–680, Sk?vde, Sweden, September 1998.
[13]  L. Zhang and X. Wu, “On the application of cross correlation function to subsample discrete time delay estimation,” Digital Signal Processing, vol. 16, no. 6, pp. 682–694, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133