The accuracy of forward models for electroencephalography (EEG) partly depends on head tissues geometry and strongly affects the reliability of the source reconstruction process, but it is not yet clear which brain regions are more sensitive to the choice of different model geometry. In this paper we compare different spherical and realistic head modeling techniques in estimating EEG forward solutions from current dipole sources distributed on a standard cortical space reconstructed from Montreal Neurological Institute (MNI) MRI data. Computer simulations are presented for three different four-shell head models, two with realistic geometry, either surface-based (BEM) or volume-based (FDM), and the corresponding sensor-fitted spherical-shaped model. Point Spread Function (PSF) and Lead Field (LF) cross-correlation analyses were performed for 26 symmetric dipole sources to quantitatively assess models' accuracy in EEG source reconstruction. Realistic geometry turns out to be a relevant factor of improvement, particularly important when considering sources placed in the temporal or in the occipital cortex. 1. Introduction Localization of neural brain sources is important in several areas of research of basic neuroscience, such as cortical organization and integration [1], and in some areas of clinical neuroscience such as preoperative planning [2] and epilepsy [3]. Localization of neural brain sources based on electroencephalography (EEG) uses scalp potential data to infer the location of underlying neural activity [1]. This procedure entails with (i) modeling the brain electrical activity, (ii) modeling the head volume conduction process for linking the neural electrical activity to EEG recordings, and (iii) reconstructing the brain electrical activity from recorded EEG data (measured scalp potentials). The first two modeling steps serve to solve the so-called EEG forward problem, which describes the distribution of electric potentials for given source locations, orientations, and signals; the following step is the inverse of the previous ones, thereby it is commonly referred to as the EEG inverse problem solution. A model of brain electrical activity (in short “source model”) is composed of bioelectric units distributed within the entire brain volume or over specific brain surfaces or confined to a few brain locations. A single source unit is often modeled as a current dipole, which well approximates the synchronized synaptic currents at a columnar level [4]. When confined to the cerebral cortex, the orientation of the current dipoles can be either free
References
[1]
B. He, Ed., Neural Engineering Norwell, Kluwer Academic Publishers, Boston, Mass, USA, 2005.
[2]
F. Vatta, P. Bruno, and P. Inchingolo, “Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter,” Journal of Clinical Neurophysiology, vol. 19, no. 1, pp. 1–15, 2002.
[3]
J. S. Ebersole and S. Hawes-Ebersole, “Clinical application of dipole models in the localization of epileptiform activity,” Journal of Clinical Neurophysiology, vol. 24, no. 2, pp. 120–129, 2007.
[4]
P. L. Nunez and R. Srinivasan, Electrical Fields of the Brain: The Neurophysics of EEG, Oxford University Press, New York, NY, USA, 2005.
[5]
A. M. Dale and M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach,” Journal of Cognitive Neuroscience, vol. 5, no. 2, pp. 162–176, 1993.
[6]
F. Vatta, P. Bruno, and P. Inchingolo, “Multiregion bicentric-spheres models of the head for the simulation of bioelectric phenomena,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 3, pp. 384–389, 2005.
[7]
J. J. Ermer, J. C. Mosher, S. Baillet, and R. M. Leahy, “Rapidly recomputable EEG forward models for realistic head shapes,” Physics in Medicine and Biology, vol. 46, no. 4, pp. 1265–1281, 2001.
[8]
M. Fuchs, R. Drenckhahn, H.-A. Wischmann, and M. Wagner, “An improved boundary element method for realistic volume-conductor modeling,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 8, pp. 980–997, 1998.
[9]
Y. Zhang, L. Ding, W. van Drongelen, K. Hecox, D. M. Frim, and B. He, “A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method,” Neuroimage, vol. 31, no. 4, pp. 1513–1524, 2006.
[10]
B. Vanrumste, G. van Hoey, R. van de Walle, M. R. P. D'Havé, I. A. Lemahieu, and P. A. Boon, “The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis,” Brain Topography, vol. 14, no. 2, pp. 83–92, 2001.
[11]
C. Ramon, P. H. Schimpf, and J. Haueisen, “Influence of head models on EEG simulations and inverse source localizations,” BioMedical Engineering Online, vol. 5, article 10, 2006.
[12]
H. Hallez, B. Vanrumste, R. Grech, et al., “Review on solving the forward problem in EEG source analysis,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 46, 2007.
[13]
M. Fuchs, M. Wagner, and J. Kastner, “Boundary element method volume conductor models for EEG source reconstruction,” Clinical Neurophysiology, vol. 112, no. 8, pp. 1400–1407, 2001.
[14]
M. Fuchs, M. Wagner, and J. Kastner, “Development of volume conductor and source models to localize epileptic foci,” Journal of Clinical Neurophysiology, vol. 24, no. 2, pp. 101–119, 2007.
[15]
C. Ramon, J. Haueisen, and P. H. Schimpf, “Influence of head models on neuromagnetic fields and inverse source localizations,” BioMedical Engineering Online, vol. 5, article 55, 2006.
[16]
B. N. Cuffin, “Effects of head shape on EEG's and MEG's,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 1, pp. 44–52, 1990.
[17]
B. Roth, A. Gorbach, and S. Sato, “How well does a three-shell model predict positions of dipoles in a realistically shaped head?” Electroencephalography and Clinical Neurophysiology, vol. 87, pp. 175–184, 1993.
[18]
B. Yvert, O. Bertrand, M. Thévenet, J. F. Echallier, and J. Pernier, “A systematic evaluation of the spherical model accuracy in EEG dipole localization,” Electroencephalography and Clinical Neurophysiology, vol. 102, no. 5, pp. 452–459, 1997.
[19]
J. P. Ary, S. A. Klein, and D. H. Fender, “Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses,” IEEE Transactions on Biomedical Engineering, vol. 28, no. 6, pp. 447–452, 1981.
[20]
B. N. Cuffin, “Effects of local variations in skull and scalp thickness on EEG's and MEG's,” IEEE Transactions on Biomedical Engineering, vol. 40, no. 1, pp. 42–48, 1993.
[21]
G. Huiskamp, M. Vroeijenstijn, R. van Dijk, G. Wieneke, and A. C. van Huffelen, “The need for correct realistic geometry in the inverse EEG problem,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 11, pp. 1281–1287, 1999.
[22]
N. von Ellenrieder, C. H. Muravchik, and A. Nehorai, “Effects of geometric head model perturbations on the EEG forward and inverse problems,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 3, pp. 421–429, 2006.
[23]
D. Van't Ent, J. C. de Munck, and A. L. Kaas, “A fast method to derive realistic BEM models for E/MEG source reconstruction,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 12, pp. 1434–1443, 2001.
[24]
M. Fuchs, J. Kastner, M. Wagner, S. Hawes, and J. S. Ebersole, “A standardized boundary element method volume conductor model,” Clinical Neurophysiology, vol. 113, no. 5, pp. 702–712, 2002.
[25]
N. von Ellenrieder, C. H. Muravchik, M. Wagner, and A. Nehorai, “Effect of head shape variations among individuals on the EEG/MEG forward and inverse problems,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 587–597, 2009.
[26]
K. A. Awada, D. R. Jackson, S. B. Baumann, et al., “Effect of conductivity uncertaintiesand modeling errors on eeg source localization using a 2-D model,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 9, pp. 1135–1145, 1998.
[27]
A. M. Dale, A. K. Liu, B. R. Fischl, et al., “Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity,” Neuron, vol. 26, no. 1, pp. 55–67, 2000.
[28]
A. K. Liu, A. M. Dale, and J. W. Belliveau, “Monte Carlo simulation studies of EEG and MEG localization accuracy,” Human Brain Mapping, vol. 16, no. 1, pp. 47–62, 2002.
[29]
R. D. Pascual-Marqui, “Review of methods for solving the EEG inverse problem,” International Journal of Bioelectromagnetism, vol. 1, no. 1, pp. 75–86, 1999.
[30]
D. Weinstein, L. Zhukov, and C. Johnson, “Lead-field bases for electroencephalography source imaging,” Annals of Biomedical Engineering, vol. 28, no. 9, pp. 1059–1065, 2000.