全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On a Class of Composition Operators on Bergman Space

DOI: 10.1155/2007/39819

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let 𝔻={z∈ℂ:|z|<1} be the open unit disk in the complex plane ℂ. Let A2(𝔻) be the space of analytic functions on 𝔻 square integrable with respect to the measure dA(z)=(1/π)dx dy. Given a∈𝔻 and f any measurable function on 𝔻, we define the function Caf by Caf(z)=f(ϕa(z)), where ϕa∈Aut(𝔻). The map Ca is a composition operator on L2(𝔻,dA) and A2(𝔻) for all a∈𝔻. Let ℒ(A2(𝔻)) be the space of all bounded linear operators from A2(𝔻) into itself. In this article, we have shown that CaSCa=S for all a∈𝔻 if and only if ∫𝔻S˜(ϕa(z))dA(a)=S˜(z), where S∈ℒ(A2(𝔻)) and S˜ is the Berezin symbol of S.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133