全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Lévy walks

DOI: 10.1103/RevModPhys.87.483

Full-Text   Cite this paper   Add to My Lib

Abstract:

Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The L\'{e}vy walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, bio-physics, and behavioral science demonstrate that this particular type of random walks provides significant insight into complex transport phenomena. This review provides a self-consistent introduction to L\'{e}vy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133