全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Analytical study of the structure of chaos near unstable points

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a 2D conservative Hamiltonian system there is a formal integral $\Phi$ besides the energy H. This is not convergent near a stable periodic orbit, but it is convergent near an unstable periodic orbit. We explain this difference and we find the convergence radius along the asymptotic curves. In simple mappings this radius is infinite. This allows the theoretical calculation of the asymptotic curves and their intersections at homoclinic points. However in more complex mappings and in Hamiltonian systems the radius of convergence is in general finite and does not allow the theoretical calculation of any homoclinic point. Then we develop a method similar to analytic continuation, applicable in systems expressed in action-angle variables, that allows the calculation of the asymptotic curves to an arbitrary length. In this way we can study analytically the chaotic regions near the unstable periodic orbit and near its homoclinic points.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133