全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Collisionless transport equations derived from a kinetic exospheric solar wind model with kappa velocity distribution functions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we discuss the collisionless transport equations, continuity, momentum and energy conservation, derived from a kinetic exospheric model of the solar wind based on a kappa velocity distribution function of the electrons. The model is stationary and is based on a non-monotonic potential energy for the protons. The present study is carried out for an exobase located at 1.5 solar radii and for two different values of the kappa index. The maximum radial distance considered is equal to one astronomical unit. The moments of the velocity distribution function computed with the kinetic exospheric model for both electrons and protons are introduced into the mass continuity equation, momentum conservation equation and energy conservation equation. The relative importance of various terms in the macroscopic transport equations for each component species are analyzed and discussed. The results obtained show that the kinetic description based on kappa velocity distribution functions satisfies rigorously the transport equations that give a macroscopic description of the solar wind plasma.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133