全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Optimal driving protocols for nano-sized devices and their dependence on couplings to reservoirs

DOI: 10.1088/1742-6596/490/1/012185

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of efficient artificial nanodevices poses challenges which are of fundamental and technological nature. Recent progress has been made in the context of finite-time thermodynamics. A central question in finite-time thermodynamics is to identify the optimal procedure to extract the greatest amount of work from a system operating under well-defined constraints. For externally controlled small systems, the optimal driving protocol maximizes the mean work spend in a finite-time transition between two given system states. For simplicity we consider an externally controlled single level system, which is embedded in a thermal environment and coupled to a particle reservoir. The optimal protocols are calculated from a master equation approach for different system-reservoir couplings. For open systems, the system-reservoir couplings are shown to have a striking influence on the optimal driving setup. We point out that the optimal protocols have discontinuous jumps at the initial and final times. Finally, this work provides a first attempt to extend these calculations to larger system sizes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133