全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

High fidelity spin entanglement using optimal control

DOI: 10.1038/ncomms4371

Full-Text   Cite this paper   Add to My Lib

Abstract:

Precise control of quantum systems is of fundamental importance for quantum device engineering, such as is needed in the fields of quantum information processing, high-resolution spectroscopy and quantum metrology. When scaling up the quantum registers in such devices, several challenges arise: individual addressing of qubits in a dense spectrum while suppressing crosstalk, creation of entanglement between distant nodes, and decoupling from unwanted interactions. The experimental implementation of optimal control is a prerequisite to meeting these challenges. Using engineered microwave pulses, we experimentally demonstrate optimal control of a prototype solid state spin qubit system comprising thirty six energy levels. The spin qubits are associated with proximal nitrogen-vacancy (NV) centers in diamond. We demonstrate precise single-electron spin qubit operations with an unprecedented fidelity F \approx 0.99 in combination with high-efficiency storage of electron spin states in a nuclear spin quantum memory. Matching single-electron spin operations with spin-echo techniques, we further realize high-quality entangled states (F > 0.82) between two electron spins on demand. After exploiting optimal control, the fidelity is mostly limited by the coherence time and imperfect initialization. Errors from crosstalk in a crowded spectrum of 8 lines as well as detrimental effects from active dipolar couplings have been simultaneously eliminated to unprecedented extent. Finally, by entanglement swapping to nuclear spins, nuclear spin entanglement over a length scale of 25 nm is demonstrated. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133