全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Functional renormalization group study of the pairing symmetry and pairing mechanism in iron-selenide superconductors

DOI: 10.1103/PhysRevB.88.104516

Full-Text   Cite this paper   Add to My Lib

Abstract:

In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{\pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we show that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133