|
Physics 2013
Elastic Platonic ShellsAbstract: On microscopic scales, the crystallinity of flexible tethered or cross linked membranes determines their mechanical response. We show that by controlling the type, number and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical Platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading-unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.
|