全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simultaneous EEG-fMRI in Patients with Unverricht-Lundborg Disease: Event-Related Desynchronization/Synchronization and Hemodynamic Response Analysis

DOI: 10.1155/2010/164278

Full-Text   Cite this paper   Add to My Lib

Abstract:

We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD. 1. Introduction The analysis of the EEG recorded during motor performance (self-paced movement) provides information about the movement-related changes in oscillatory cortical activity. In normal subjects, an amplitude attenuation of specific frequency components (event-related desynchronization, ERD) in the - and -bands precedes a voluntary movement and reflects cortical activation concurring with movement planning. At the end of the movement, event-related synchronization (ERS) in the -band replaces ERD [1]. Simultaneous EEG-fMRI acquisition during performance of a motor task enables the identification of changes of brain activity in motor areas and provides information on the source of the event generator. In Unverricht-Lundborg disease (ULD) patients, voluntary movements are selectively impaired by the presence of action myoclonus [2]. In these patients, ERD/ERS changes highlight increased and diffuse activation of the motor cortex during movement planning and severely reduced postexcitatory inhibition of the motor cortex [3]. We simultaneously acquired EEG and fMRI in order to study the spatiotemporal pattern of ERD/ERS resulting from self-paced extension of the index finger in ULD patients and to explore the correlation with hemodynamic changes. 2. Material and Methods We enrolled 7 right-handed patients (mean age: 29.1 10 years; four women) with ULD, whose main clinical features are reported in Table 1 and 6 right-handed healthy controls (mean age: 29.1 6.7 years; five women). In all patients, the diagnosis of ULD was established on the basis of the typical electroclinical presentation and of the genetic finding of dodecamer expansion at cstb gene [4]. Table 1: Patient data. 2.1. Motor Task Inside the bore of the scanner, subjects laid supine with their arms relaxed; their head was

References

[1]  G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1842–1857, 1999.
[2]  M. Koskiniemi, E. Toivakka, and M. Donner, “Progressive myoclonus epilepsy. Electroencephalographical findings,” Acta Neurologica Scandinavica, vol. 50, pp. 333–359, 1974.
[3]  E. Visani, P. Agazzi, L. Canafoglia, et al., “Movement-related desynchronization-synchronization (ERD/ERS) in patients with Unverricht-Lundborg disease,” NeuroImage, vol. 33, no. 1, pp. 161–168, 2006.
[4]  K. Virtaneva, E. D'Amato, J. Miao, et al., “Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1,” Nature Genetics, vol. 15, no. 4, pp. 393–396, 1997.
[5]  A. Magaudda, P. Gelisse, and P. Genton, “Antimyoclonic effect of levetiracetam in 13 patients with Unverricht-Lundborg disease: clinical observations,” Epilepsia, vol. 45, no. 6, pp. 678–681, 2004.
[6]  H. Laufs, J. Daunizeau, D. W. Carmichael, and A. Kleinschmidt, “Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging,” NeuroImage, vol. 40, no. 2, pp. 515–528, 2008.
[7]  K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Computerized Medical Imaging and Graphics, vol. 33, no. 2, pp. 131–139, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133