全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1998 

BRST cohomology and Hodge decomposition theorem in Abelian gauge theory

DOI: 10.1142/S0217751X00000756

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss the Becchi-Rouet-Stora-Tyutin (BRST) cohomology and Hodge decomposition theorem for the two dimensional free U(1) gauge theory. In addition to the usual BRST charge, we derive a local, conserved and nilpotent co(dual)-BRST charge under which the gauge-fixing term remains invariant. We express the Hodge decomposition theorem in terms of these charges and the Laplacian operator. We take a single photon state in the quantum Hilbert space and demonstrate the notion of gauge invariance, no-(anti)ghost theorem, transversality of photon and establish the topological nature of this theory by exploiting the concepts of BRST cohomology and Hodge decomposition theorem. In fact, the topological nature of this theory is encoded in the vanishing of the Laplacian operator when equations of motion are exploited. On the two dimensional compact manifold, we derive two sets of topological invariants with respect to the conserved and nilpotent BRST- and co-BRST charges and express the Lagrangian density of the theory as the sum of terms that are BRST- and co-BRST invariants. Mathematically, this theory captures together some of the key features of both Witten- and Schwarz type of topological field theories.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133