全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  1998 

Levinson's Theorem for the Klein-Gordon Equation in Two Dimensions

DOI: 10.1103/PhysRevA.59.995

Full-Text   Cite this paper   Add to My Lib

Abstract:

The two-dimensional Levinson theorem for the Klein-Gordon equation with a cylindrically symmetric potential $V(r)$ is established. It is shown that $N_{m}\pi=\pi (n_{m}^{+}-n_{m}^{-})= [\delta_{m}(M)+\beta_{1}]-[\delta_{m}(-M)+\beta_{2}]$, where $N_{m}$ denotes the difference between the number of bound states of the particle $n_{m}^{+}$ and the ones of antiparticle $n_{m}^{-}$ with a fixed angular momentum $m$, and the $\delta_{m}$ is named phase shifts. The constants $\beta_{1}$ and $\beta_{2}$ are introduced to symbol the critical cases where the half bound states occur at $E=\pm M$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133