全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2000 

Supersymmetric Extension of the Standard Model with Naturally Stable Proton

DOI: 10.1103/PhysRevD.62.055013

Full-Text   Cite this paper   Add to My Lib

Abstract:

A new supersymmetric standard model based on N=1 supergravity is constructed, aiming at natural explanation for the proton stability without invoking an ad hoc discrete symmetry through R parity. The proton is protected from decay by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, making it possible to incorporate the superfields for right-handed neutrinos and an SU(2)-singlet Higgs boson. The vacuum expectation value of this Higgs boson, which induces spontaneous breakdown of the U(1) symmetry, yields large Majorana masses for the right-handed neutrinos, leading to small masses for the ordinary neutrinos. The linear coupling of SU(2)-doublet Higgs superfields, which is indispensable to the superpotential of the minimal supersymmetric standard model, is replaced by a trilinear coupling of the Higgs superfields, so that there is no mass parameter in the superpotential. The energy dependencies of the model parameters are studied, showing that gauge symmetry breaking is induced by radiative corrections. Certain ranges of the parameter values compatible with phenomena at the electroweak energy scale can be derived from universal values of masses-squared and trilinear coupling constants for scalar fields at a very high energy scale.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133