全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single and binary component solids

DOI: 10.1103/PhysRevB.89.054303

Full-Text   Cite this paper   Add to My Lib

Abstract:

A combination of systematic density functional theory (DFT) calculations and machine learning techniques has a wide range of potential applications. This study presents an application of the combination of systematic DFT calculations and regression techniques to the prediction of the melting temperature for single and binary compounds. Here we adopt the ordinary least-squares regression (OLSR), partial least-squares regression (PLSR), support vector regression (SVR) and Gaussian process regression (GPR). Among the four kinds of regression techniques, the SVR provides the best prediction. In addition, the inclusion of physical properties computed by the DFT calculation to a set of predictor variables makes the prediction better. Finally, a simulation to find the highest melting temperature toward the efficient materials design using kriging is demonstrated. The kriging design finds the compound with the highest melting temperature much faster than random designs. This result may stimulate the application of kriging to efficient materials design for a broad range of applications.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133