全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Electrohydrodynamics within electrical double layer in a pressure-driven flow in presence of finite temperature gradients

DOI: 10.1103/PhysRevE.88.053020

Full-Text   Cite this paper   Add to My Lib

Abstract:

A wide spectrum of electrokinetic studies is modelled as isothermal ones to expedite analysis even when such conditions may be extremely difficult to realize in practice. As a clear and novel departure from this trend, we address the case of flow-induced electrohydrodynamics, commonly referred to as streaming potential, in a situation where finite temperature gradients do indeed exist. By way of analysing a model problem of flow through a narrow parallel plate channel, we show that the temperature gradients have a significant effect on the streaming potential, and, consequently, on the flow itself. We incorporate thermoelectric effects in our model by a full-fledged coupling among the electric potential, the ionic species distribution, the fluid velocity and the local fluid temperature fields without resorting to ad hoc simplifications. We expect this expository study to contribute towards more sophisticated future inquiries into practical micro-/nano-fluidic applications coupling thermal field focusing with electrokinetic effects.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133