全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Largest Lyapunov exponents for lattices of interacting classical spins

DOI: 10.1103/PhysRevLett.109.034101

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate how generic the onset of chaos in interacting many-body classical systems is in the context of lattices of classical spins with nearest neighbor anisotropic couplings. Seven large lattices in different spatial dimensions were considered. For each lattice, more than 2000 largest Lyapunov exponents for randomly sampled Hamiltonians were numerically computed. Our results strongly suggest the absence of integrable nearest-neighbor Hamiltonians for the infinite lattices except for the trivial Ising case. In the vicinity of the Ising case, the largest Lyapunov exponents exhibit a power-law growth, while further away they become rather weakly sensitive to the Hamiltonian anisotropy. We also provide an analytical derivation of these results.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133