全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Scaling properties of discontinuous maps

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the scaling properties of discontinuous maps by analyzing the average value of the squared action variable $I^2$. We focus our study on two dynamical regimes separated by the critical value $K_c$ of the control parameter $K$: the slow diffusion ($KK_c$) regimes. We found that the scaling of $I^2$ for discontinuous maps when $K\ll K_c$ and $K\gg K_c$ obeys the same scaling laws, in the appropriate limits, than Chirikov's standard map in the regimes of weak and strong nonlinearity, respectively. However, due to absence of KAM tori, we observed in both regimes that $I^2\propto nK^\beta$ for $n\gg 1$ (being $n$ the $n$-th iteration of the map) with $\beta\approx 5/2$ when $K\ll K_c$ and $\beta\approx 2$ for $K\gg K_c$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133