全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Induced polarization and electronic properties of carbon doped boron-nitride nanoribbons

DOI: 10.1103/PhysRevB.86.195433

Full-Text   Cite this paper   Add to My Lib

Abstract:

The electronic properties of boron-nitride nanoribbons (BNNRs) doped with a line of carbon atoms are investigated by using density functional calculations. Three different configurations are possible: the carbon atoms may replace a line of boron or nitrogen atoms or a line of alternating B and N atoms which results in very different electronic properties. We found that: i) the NCB arrangement is strongly polarized with a large dipole moment having an unexpected direction, ii) the BCB and NCN arrangement are non-polar with zero dipole moment, iii) the doping by a carbon line reduces the band gap independent of the local arrangement of boron and nitrogen around the carbon line, iv) an electric field parallel to the carbon line polarizes the BN sheet and is found to be sensitive to the presence of carbon dopants, and v) the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases linearly with increasing applied electric field directed parallel to the carbon line. We show that the polarization and energy gap of carbon doped BNNRs can be tuned by an electric field applied parallel along the carbon line.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133