全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neurodegenerative Shielding by Curcumin and Its Derivatives on Brain Lesions Induced by 6-OHDA Model of Parkinson's Disease in Albino Wistar Rats

DOI: 10.1155/2012/942981

Full-Text   Cite this paper   Add to My Lib

Abstract:

Study was undertaken to evaluate the neurodegenerative defending potential of curcumin (CUR), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) on 6-hydroxydopamine-(6-OHDA) induced Parkinsonism model in rats. Curcuminoids were administered (60?mg/kg, body weight, per oral) for three weeks followed by unilateral injection of 6-OHDA on 22nd day (10?μg/2?μL) into the right striatum leading to extensive loss of dopaminergic cells. The behavioral observations, biochemical markers, quantification of dopamine (DA), DOPAC, and HVA followed by dopamine (D2) receptor binding assay and tyrosine hydroxylase (TH, using immunohistochemistry) were evaluated using HPLC after three weeks of lesion. Pretreated animals showed significant protection against neuronal degeneration compared to lesion animals by normalizing the deranged levels of biomarkers and showed the potency in the order CUR > DMC > BDMC. The same order of effectiveness was observed in D2 receptors binding assay and TH immunohistochemistry study. We conclude that curcuminoids appear to shield progressive neuronal degeneration from increased oxidative attack in 6-OHDA-lesioned rats through its free radical scavenging mechanism, and DA, DOPAC, and HVA enhancing capabilities in the sequence of efficacy CUR > DMC > BDMC. Further, curcuminoids may have potential utility in treatment of many more oxidative stress-induced neurodegenerative disorders. 1. Introduction Neurodegenerative disorders is a class of neurological diseases marked by extensive neuronal loss in the brain [1]. Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region leads to the progression of Parkinson’s disease (PD). This is followed by depletion of striatum dopamine content [2]. When up to 80% of the dopamine-producing cells are damaged, and are not able to produce enough dopamine, then the motor symptoms (bradykinesia, resting tremor, rigidity, and postural disturbances) of PD appear. 6-OHDA, a potent neurotoxin, can severely damage dopaminergic neurons in substantia nigra, leading to a significant decrease in dopamine levels, followed by precise behavioral, biochemical, and pathological changes distinctive in PD. These toxic effects can be attributed to the formation of various reactive oxygen species, lipid peroxidation, depletion of reduced glutathione, and mitochondrial complex I deficits [3]. 6-OHDA-lesioned rat model has a measurable motor deficit, which can be seen by apomorphine-induced contralateral rotations [4]. Although progress has been made in the symptomatic treatment of PD since

References

[1]  R. C. Herdman and B. B. Potter, Neural Grafting: Repairing the Brain and Spinal Cord, Government Printing Office. U.S. Congress, Office of Technology Assessment, Washington, DC, USA, 1990.
[2]  H. Yuan, L. W. Liang, Z. J. Chen et al., “R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat,” Neuroscience Bulletin, vol. 22, no. 6, pp. 331–338, 2006.
[3]  A. Schober, “Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP,” Cell and Tissue Research, vol. 318, no. 1, pp. 215–224, 2004.
[4]  S. M. Papa and T. N. Chase, “Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys,” Annals of Neurology, vol. 39, no. 5, pp. 574–578, 1996.
[5]  M.-F. Chesselet and F. Richter, “Modelling of Parkinson's disease in mice,” The Lancet Neurology, vol. 10, no. 12, pp. 1108–1118, 2011.
[6]  G. M. Cole, B. Teter, and S. A. Frautschy, “Neuroprotective effects of curcumin,” Advances in Experimental Medicine and Biology, vol. 595, pp. 197–212, 2007.
[7]  H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, “Curcumin: from ancient medicine to current clinical trials,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1631–1652, 2008.
[8]  B. B. Aggarwal and B. Sung, “Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets,” Trends in Pharmacological Sciences, vol. 30, no. 2, pp. 85–94, 2009.
[9]  H. H. Tonnesen, “Studies on curcumin and curcuminoids. XV. Catalytic effect of demethoxy- and bisdemethoxycurcumin on the peroxidation of linoleic acid by 15-lipoxygenase,” International Journal of Pharmaceutics, vol. 51, no. 2, pp. 179–181, 1989.
[10]  H. Inano, M. Onoda, N. Inafuku et al., “Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats,” Carcinogenesis, vol. 21, no. 10, pp. 1835–1841, 2000.
[11]  M. A. Kelly, M. Rubinstein, T. J. Phillips et al., “Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations,” Journal of Neuroscience, vol. 18, no. 9, pp. 3470–3479, 1998.
[12]  J. R. Boissier and P. Simon, “Action of caffeine on the spontaneous motility of the mouse,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 158, no. 1, pp. 212–221, 1965.
[13]  D. K. Pandey, R. Mahesh, A. A. kumar, V. S. Rao, M. Arjun, and R. Rajkumar, “A novel 5-HT2A receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants,” Pharmacology Biochemistry and Behavior, vol. 94, no. 3, pp. 363–373, 2010.
[14]  G. Paxinos and C. Watson, The Rat Brain Stereotaxic Coordinates, Academic Press, Sydney, Australia, 1981.
[15]  A. K. Agrawal, R. E. Squibb, and S. C. Bondy, “The effects of acrylamide treatment upon the dopamine receptor,” Toxicology and Applied Pharmacology, vol. 58, no. 1, pp. 89–99, 1981.
[16]  H. Haikala, “Use of a novel type of rotating disc electrode and a flow cell with laminar flow pattern for the electrochemical detection of biogenic monoamines and their metabolites after Sephadex gel chromatographic purification and high-performance liquid chromatographic isolation from rat brain,” Journal of Neurochemistry, vol. 49, no. 4, pp. 1033–1041, 1987.
[17]  I. C. Kilpatrick, M. W. Jones, and O. T. Phillipson, “A semiautomated analysis method for catecholamines, indoleamines, and some prominent metabolites in microdissected regions of the nervous system: an isocratic HPLC technique employing coulometric detection and minimal sample preparation,” Journal of Neurochemistry, vol. 46, no. 6, pp. 1865–1876, 1986.
[18]  S. Mishra and K. Palanivelu, “The effect of curcumin (turmeric) on Alzheimer's disease: an overview,” Annals of Indian Academy of Neurology, vol. 11, no. 1, pp. 13–19, 2008.
[19]  T. Shingo, I. Date, H. Yoshida, and T. Ohmoto, “Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson's disease,” Journal of Neuroscience Research, vol. 69, no. 6, pp. 946–954, 2002.
[20]  L. Zecca, F. A. Zucca, H. Wilms, and D. Sulzer, “Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics,” Trends in Neurosciences, vol. 26, no. 11, pp. 578–580, 2003.
[21]  K. A. Malkus, E. Tsika, and H. Ischiropoulos, “Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle,” Molecular Neurodegeneration, vol. 4, no. 1, article 24, 2009.
[22]  B. J. Kelley and D. S. Knopman, “Alternative medicine and Alzheimer disease,” Neurologist, vol. 14, no. 5, pp. 299–306, 2008.
[23]  F. Yang, G. P. Lim, A. N. Begum et al., “Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 5892–5901, 2005.
[24]  S. Yodkeeree, W. Chaiwangyen, S. Garbisa, and P. Limtrakul, “Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA,” Journal of Nutritional Biochemistry, vol. 20, no. 2, pp. 87–95, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133