全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intercellular Interactomics of Human Brain Endothelial Cells and Th17 Lymphocytes: A Novel Strategy for Identifying Therapeutic Targets of CNS Inflammation

DOI: 10.1155/2011/175364

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leukocyte infiltration across an activated brain endothelium contributes to the neuroinflammation seen in many neurological disorders. Recent evidence shows that IL-17-producing T-lymphocytes (e.g., Th17 cells) possess brain-homing capability and contribute to the pathogenesis of multiple sclerosis and cerebral ischemia. The leukocyte transmigration across the endothelium is a highly regulated, multistep process involving intercellular communications and interactions between the leukocytes and endothelial cells. The molecules involved in the process are attractive therapeutic targets for inhibiting leukocyte brain migration. We hypothesized and have been successful in demonstrating that molecules of potential therapeutic significance involved in Th17-brain endothelial cell (BEC) communications and interactions can be discovered through the combination of advanced membrane/submembrane proteomic and interactomic methods. We describe elements of this strategy and preliminary results obtained in method and approach development. The Th17-BEC interaction network provides new insights into the complexity of the transmigration process mediated by well-organized, subcellularly localized molecular interactions. These molecules and interactions are potential diagnostic, therapeutic, or theranostic targets for treatment of neurological conditions accompanied or caused by leukocyte infiltration. 1. Leukocyte Infiltration in CNS Disorders The central nervous system (CNS) has long been regarded as an “immune privileged” organ, being both immunologically inert and immunologically separated from the peripheral immune system [1]. Current data, however, indicates that the CNS is both immune competent and actively interactive with the peripheral immune system [2]. In physiological conditions, a limited number of peripheral immune cells cross the blood-brain barrier (BBB) and enter the CNS in a process called “immune surveillance” [1]. Many neurological diseases are associated with a much higher rate of leukocyte trafficking into the CNS, resulting in leukocyte infiltration and leukocyte-mediated neuronal damage. CNS inflammation is a major contributor to the diverse forms of brain injury seen in cerebral ischemia, multiple sclerosis, cerebral infection, and epilepsy [3–5]. A growing body of recent evidence shows that infiltration of a subset of IL-17-producing T-lymphocytes into the CNS contributes to the pathogenesis of multiple sclerosis, and cerebral ischemia. In multiple sclerosis these cells are CD4+ T helper 17 (Th17) lymphocytes that have CNS-homing properties and

References

[1]  M. J. Carson, J. M. Doose, B. Melchior, C. D. Schmid, and C. C. Ploix, “CNS immune privilege: hiding in plain sight,” Immunological Reviews, vol. 213, no. 1, pp. 48–65, 2006.
[2]  R. M. Ransohoff, P. Kivis?kk, and G. Kidd, “Three or more routes for leukocyte migration into the central nervous system,” Nature Reviews Immunology, vol. 3, no. 7, pp. 569–581, 2003.
[3]  B. V. Zlokovic, “The blood-brain barrier in health and chronic neurodegenerative disorders,” Neuron, vol. 57, no. 2, pp. 178–201, 2008.
[4]  P. F. Fabene, M. G. Navarro, M. Martinello et al., “A role for leukocyte-endothelial adhesion mechanisms in epilepsy,” Nature Medicine, vol. 14, no. 12, pp. 1377–1383, 2008.
[5]  G. J. del Zoppo, “Inflammation and the neurovascular unit in the setting of focal cerebral ischemia,” Neuroscience, vol. 158, no. 3, pp. 972–982, 2009.
[6]  G. Gyulveszi, S. Haak, and B. Becher, “IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo,” European Journal of Immunology, vol. 39, no. 7, pp. 1864–1869, 2009.
[7]  H. Kebir, K. Kreymborg, I. Ifergan et al., “Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation,” Nature Medicine, vol. 13, no. 10, pp. 1173–1175, 2007.
[8]  M. Schroeter, S. Jander, O. W. Witte, and G. Stoll, “Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion,” Journal of Neuroimmunology, vol. 55, no. 2, pp. 195–203, 1994.
[9]  G. Yilmaz, T. V. Arumugam, K. Y. Stokes, and D. N. Granger, “Role of T lymphocytes and interferon-γ in ischemic stroke,” Circulation, vol. 113, no. 17, pp. 2105–2112, 2006.
[10]  T. Shichita, Y. Sugiyama, H. Ooboshi et al., “Pivotal role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury,” Nature Medicine, vol. 15, no. 8, pp. 946–950, 2009.
[11]  D. J. Begley and M. W. Brightman, “Structural and functional aspects of the blood-brain barrier,” Progress in Drug Research, vol. 61, pp. 39–78, 2003.
[12]  S. Weinbaum, X. Zhang, Y. Han, H. Vink, and S. C. Cowin, “Mechanotransduction and flow across the endothelial glycocalyx,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7988–7995, 2003.
[13]  S. Weinbaum, J. M. Tarbell, and E. R. Damiano, “The structure and function of the endothelial glycocalyx layer,” Annual Review of Biomedical Engineering, vol. 9, pp. 121–167, 2007.
[14]  A. W. Vorbrodt, D. H. Dobrogowska, A. S. Lossinsky, and H. M. Wisniewski, “Ultrastructural localization of lectin receptors on the luminal and abluminal aspects of brain micro-blood vessels,” Journal of Histochemistry and Cytochemistry, vol. 34, no. 2, pp. 251–261, 1986.
[15]  J. Vogel, M. Sperandio, A. R. Pries, O. Linderkamp, P. Gaehtgens, and W. Kuschinsky, “Influence of the endothelial glycocalyx on cerebral blood flow in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 11, pp. 1571–1578, 2000.
[16]  B. Rossi and G. Constantin, “Anti-selectin therapy for the treatment of inflammatory diseases,” Inflammation and Allergy—Drug Targets, vol. 7, no. 2, pp. 85–93, 2008.
[17]  B. Engelhardt and H. Wolburg, “Mini review: transendothelial migration of leukocytes: through the front door or around the side of the house?” European Journal of Immunology, vol. 34, no. 11, pp. 2955–2963, 2004.
[18]  C. Coisne, R. Lyck, and B. Engelhardt, “Therapeutic targeting of leukocyte trafficking across the blood-brain barrier,” Inflammation and Allergy—Drug Targets, vol. 6, no. 4, pp. 210–222, 2007.
[19]  S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, “Brain endothelial cell-cell junctions: how to "open" the blood brain barrier,” Current Neuropharmacology, vol. 6, no. 3, pp. 179–192, 2008.
[20]  E. S. Wittchen, “Endothelial signaling in paracellular and transcellular leukocyte transmigration,” Frontiers in Bioscience, vol. 14, pp. 2522–2545, 2009.
[21]  J. Greenwood, R. Howes, and S. Lightman, “The blood-retinal barrier in experimental autoimmune uveoretinitis: leukocyte interactions and functional damage,” Laboratory Investigation, vol. 70, no. 1, pp. 39–52, 1994.
[22]  B. A. Brown, “Natalizumab in the treatment of multiple sclerosis,” Therapeutics and Clinical Risk Management, vol. 5, no. 3, pp. 585–594, 2009.
[23]  R. M. Ransohoff, “Natalizumab and PML,” Nature Neuroscience, vol. 8, no. 10, p. 1275, 2005.
[24]  C. T. Welsh, J. W. Rose, K. E. Hill, and J. J. Townsend, “Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1α,” Journal of Neuroimmunology, vol. 43, no. 1-2, pp. 161–167, 1993.
[25]  C. L. Leonardi, “Efalizumab in the treatment of psoriasis,” Dermatologic Therapy, vol. 17, no. 5, pp. 393–400, 2004.
[26]  R. Cayrol, K. Wosik, J. L. Berard et al., “Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system,” Nature Immunology, vol. 9, no. 2, pp. 137–145, 2008.
[27]  A. S. Haqqani, J. F. Kelly, and D. B. Stanimirovic, “Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags,” Methods in Molecular Biology, vol. 439, pp. 225–240, 2008.
[28]  A. S. Haqqani, J. J. Hill, J. Mullen, and D. Stanimirovic, “Methods to Study Glycoproteins at the Blood-Brain Barrier Using Mass Spectrometry,” in Methods in Molecular Biology: The Blood-Brain and Other Neural Barriers, S. Nag, Ed., The Humana Press, 2011.
[29]  A. S. Haqqani, J. F. Kelly, and D. B. Stanimirovic, “Quantitative protein profiling by mass spectrometry using label-free proteomics,” Methods in Molecular Biology, vol. 439, pp. 241–256, 2008.
[30]  J. J. Hill, M. J. Moreno, J. C. Y. Lam, A. S. Haqqani, and J. F. Kelly, “Identification of secreted proteins regulated by cAMP in glioblastoma cells using glycopeptide capture and label-free quantification,” Proteomics, vol. 9, no. 3, pp. 535–549, 2009.
[31]  H. Zhang, X. J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nature Biotechnology, vol. 21, no. 6, pp. 660–666, 2003.
[32]  S. M. Studer and N. Kaminski, “Towards systems biology of human pulmonary fibrosis,” Proceedings of the American Thoracic Society, vol. 4, no. 1, pp. 85–91, 2007.
[33]  K. A. Pattin and J. H. Moore, “Role for protein-protein interaction databases in human genetics,” Expert Review of Proteomics, vol. 6, no. 6, pp. 647–659, 2009.
[34]  M. Pellegrini, D. Haynor, and J. M. Johnson, “Protein interaction networks,” Expert Review of Proteomics, vol. 1, no. 2, pp. 239–249, 2004.
[35]  A. H. Y. Tong, M. Evangelista, A. B. Parsons et al., “Systematic genetic analysis with ordered arrays of yeast deletion mutants,” Science, vol. 294, no. 5550, pp. 2364–2368, 2001.
[36]  B. B. Weksler, E. A. Subileau, N. Perrière et al., “Blood-brain barrier-specific properties of a human adult brain endothelial cell line,” FASEB Journal, vol. 19, no. 13, pp. 1872–1874, 2005.
[37]  D. Stanimirovic, A. Shapiro, J. Wong, J. Hutchison, and J. Durkin, “The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion,” Journal of Neuroimmunology, vol. 76, no. 1-2, pp. 193–205, 1997.
[38]  A. S. Haqqani, J. Kelly, E. Baumann, R. F. Haseloff, I. E. Blasig, and D. B. Stanimirovic, “Protein markers of ischemic insult in brain endothelial cells identified using 2D gel electrophoresis and ICAT-based quantitative proteomics,” Journal of Proteome Research, vol. 6, no. 1, pp. 226–239, 2007.
[39]  A. S. Haqqani, J. F. Kelly, and D. B. Stanimirovic, “Quantitative protein profiling by mass spectrometry using label-free proteomics,” Methods in Molecular Biology, vol. 439, pp. 241–256, 2008.
[40]  T. Hase, H. Tanaka, Y. Suzuki, S. Nakagawa, and H. Kitano, “Structure of protein interaction networks and their implications on drug design,” PLoS Computational Biology, vol. 5, no. 10, Article ID e1000550, 2009.
[41]  A. S. Haqqani, M. Nesic, ED. Preston, E. Baumann, J. Kelly, and D. Stanimirovic, “Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS,” FASEB Journal, vol. 19, no. 13, pp. 1809–1821, 2005.
[42]  A. Dodelet-Devillers, R. Cayrol, H. J. Van et al., “Functions of lipid raft membrane microdomains at the blood-brain barrier,” Journal of Molecular Medicine, vol. 87, no. 8, pp. 765–774, 2009.
[43]  R. Cayrol, A. S. Haqqani, I. Ifergan, A. Dodelet-Devillers, and A. Prat, “Isolation of human brain endothelial cells and characterization of lipid raft-associated proteins by mass spectroscopy,” Methods in Molecular Biology, vol. 686, pp. 275–295, 2011.
[44]  Z. Mamdouh, A. Mikhailov, and W. A. Muller, “Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment,” Journal of Experimental Medicine, vol. 206, no. 12, pp. 2795–2808, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133