全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Trends in Implantable Left Ventricular Assist Devices

DOI: 10.4061/2011/290561

Full-Text   Cite this paper   Add to My Lib

Abstract:

The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs) have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH), as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process. 1. Introduction Heart transplantation is still the therapy of choice for patients with sustained heart failure resistant to any medical therapy. More than 16 million people are currently diagnosed with chronic heart failure (CHF) in Europe and the United States, where its prevalence averages 2.5% of the normal population [1, 2]. CHF increases significantly after age 65, and the population in this group will double within the next 20 years, suggesting heart failure incidence will similarly [3]. In the last decades, long waiting times for cardiac transplantation and subsequent increased mortality have led to an increase in the use of left ventricular assist devices (LVADs). Permanent mechanical circulatory support by new, smaller devices is a promising therapeutic option developed to provide an alternative to transplantation and to reduce mortality on the heart waiting list. The primary focus in this field was to develop a total artificial heart (TAH), but this has had limited success and, as a result, shifted attention to ventricular assist devices. The first-generation of implantable ventricular assist devices (VADs) were pulsatile, volume-displacement pumps. The start of the modern LVAD era began with the introduction of the HeartMate XVE in 1998. Although the XVE launched amidst great fanfare and high expectations, the device failed to displace the long-standing view that mechanical ventricular support was merely an expensive gimmick. These devices provide excellent circulatory support and improve survival until heart transplantation. However, they have many application limitations, such as

References

[1]  American Heart Association. 2009. Heart and Stroke facts: 2006 update, http://www.americanheart.org.
[2]  Br. Heart Found. 2009, http://www.heartstats.org.
[3]  E. Braunwald, D. P. Zipes, P. Libby, and R. O. Bonow, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Saunders, Philadelphia, Pa, USA, 7th edition, 2005.
[4]  M. S. Slaughter, J. G. Rogers, C. A. Milano et al., “Advanced heart failure treated with continuous-flow left ventricular assist device,” The New England Journal of Medicine, vol. 361, no. 23, pp. 2241–2251, 2009.
[5]  J. G. Rogers, K. D. Aaronson, A. J. Boyle, et al., “Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients,” Journal of the American College of Cardiology, vol. 55, no. 17, pp. 1826–1834, 2010.
[6]  J. K. Kirklin, D. C. Naftel, R. L. Kormos et al., “Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants,” Journal of Heart and Lung Transplantation, vol. 29, no. 1, pp. 1–10, 2010.
[7]  F. D. Pagani, L. W. Miller, S. D. Russell et al., “Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device,” Journal of the American College of Cardiology, vol. 54, no. 4, pp. 312–321, 2009.
[8]  F. D. Pagani, “Continuous-flow rotary left ventricular assist devices with “3rd Generation” design,” Seminars in Thoracic and Cardiovascular Surgery, vol. 20, no. 3, pp. 255–263, 2008.
[9]  M. Morshuis, A. El-Banayosy, L. Arusoglu et al., “European experience of DuraHeart? magnetically levitated centrifugal left ventricular assist system,” European Journal of Cardio-Thoracic Surgery, vol. 35, no. 6, pp. 1020–1028, 2009.
[10]  L. W. Miller, F. D. Pagani, S. D. Russell et al., “Use of a continuous-flow device in patients awaiting heart transplantation,” The New England Journal of Medicine, vol. 357, no. 9, pp. 885–896, 2007.
[11]  E. A. Rose, A. C. Gelijns, A. J. Moskowitz et al., “Long-term use of a left ventricular assist device for end-stage heart failure,” The New England Journal of Medicine, vol. 345, no. 20, pp. 1435–1443, 2001.
[12]  G. M. Wieselthaler, G. O'Driscoll, P. Jansz, A. Khaghani, and M. Strueber, “Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial,” Journal of Heart and Lung Transplantation, vol. 29, no. 11, pp. 1218–1225, 2010.
[13]  R. Hetzer, T. Krabatsch, A. Stepanenko, E. Hennig, and E. V. Potapov, “Long-term biventricular support with the heartware implantable continuous flow pump,” Journal of Heart and Lung Transplantation, vol. 29, no. 7, pp. 822–824, 2010.
[14]  K Aaronson, “Evaluation of HeartWare HVAD left ventricular assist device system for the treatment of advanced heart failure: results of the ADVANCE Bridge to transplant Trial,” Presentation at the AHA meeting, November 2010.
[15]  R. D. Dowling, S. J. Park, F. D. Pagani et al., “HeartMate VE LVAS design enhancements and its impact on device reliability,” European Journal of Cardio-Thoracic Surgery, vol. 25, no. 6, pp. 958–963, 2004.
[16]  M. P. Siegenthaler, O. H. Frazier, F. Beyersdorf et al., “Mechanical reliability of the Jarvik 2000 Heart,” Annals of Thoracic Surgery, vol. 81, no. 5, pp. 1752–1759, 2006.
[17]  O. H. Frazier, T. J. Myers, S. Westaby et al., “Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure,” Annals of Surgery, vol. 237, no. 5, pp. 631–637, 2003.
[18]  C. Nojiri, T. Kijima, J. Maekawa et al., “Development status of terumo implantable left ventricular assist system,” Artificial Organs, vol. 25, no. 5, pp. 411–413, 2001.
[19]  J. Lahpor, A. Khaghani, R. Hetzer et al., “European results with a continuous-flow ventricular assist device for advanced heart-failure patients,” European Journal of Cardio-Thoracic Surgery, vol. 37, no. 2, pp. 357–361, 2010.
[20]  M. Strüber, G. O'Drscoli, P. Jansz, et al., “Multicenter evaluation of an intrapericardial left ventricular assist system,” Journal of the American College of Cardiology, vol. 57, no. 12, pp. 1375–1382, 2011.
[21]  M. Strüber, K. Sander, J. Lahpor et al., “HeartMate II left ventricular assist device; early European experience,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 2, pp. 289–294, 2008.
[22]  S. Haj-Yahia, E. J. Birks, P. Rogers et al., “Midterm experience with the Jarvik 2000 axial flow left ventricular assist device,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 1, pp. 199–203, 2007.
[23]  O. H. Frazier, E. A. Rose, P. McCarthy et al., “Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system,” Annals of Surgery, vol. 222, no. 3, pp. 327–338, 1995.
[24]  O. H. Frazier, E. A. Rose, M. C. Dz et al., “Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation,” Journal of Thoracic and Cardiovascular Surgery, vol. 122, no. 6, pp. 1186–1195, 2001.
[25]  V. L. Poirier, “Worldwide experience with the TCI HeartMate system: issues and future perspective,” The Thoracic and Cardiovascular Surgeon, vol. 47, pp. 316–320, 1999.
[26]  B. C. Sun, K. A. Catanese, T. B. Spanier et al., “100 Long-term implantable left ventricular assist devices: the columbia presbyterian interim experience,” Annals of Thoracic Surgery, vol. 68, no. 2, pp. 688–694, 1999.
[27]  P. M. McCarthy, N. O. Smedira, R. L. Vargo et al., “One hundred patients with the heartmate left ventricular assist device: evolving concepts and technology,” Journal of Thoracic and Cardiovascular Surgery, vol. 115, no. 4, pp. 904–912, 1998.
[28]  W. L. Holman, R. L. Kormos, D. C. Naftel et al., “Predictors of death and transplant in patients With a mechanical circulatory support device: a multi-institutional study,” Journal of Heart and Lung Transplantation, vol. 28, no. 1, pp. 44–50, 2009.
[29]  K. Nawata, T. Nishimura, and S. Kyo, “Outcomes of midterm circulatory support by left ventricular assist device implantation with descending aortic anastomosis,” Journal of Artificial Organs, vol. 13, no. 4, pp. 197–201, 2011.
[30]  B. P. Griffith, R. L. Kormos, H. S. Borovetz et al., “HeartMate II left ventricular assist system: from concept to first clinical use,” Annals of Thoracic Surgery, vol. 71, no. 3, supplement 1, pp. S116–S120, 2001.
[31]  A. J. Boyle, S. D. Russell, J. J. Teuteberg et al., “Low thromboembolism and pump thrombosis with the heartMate II left ventricular assist device: analysis of outpatient anti-coagulation,” Journal of Heart and Lung Transplantation, vol. 28, no. 9, pp. 881–887, 2009.
[32]  S. H. Reichenbach, K. B. Masterson, K. C. Butler, and D. J. Farrar, “Negligible bearing wear in explanted heartMate II LVADs following clinical support for up to four years,” in Proceedings of the Annual Meeting of the International Society of Rotary Blood Pumps, Berlin, Germany, November 2010.
[33]  H. Hoshi, T. Shinshi, and S. Takatani, “Third-generation blood pumps with mechanical noncontact magnetic bearings,” Artificial Organs, vol. 30, no. 5, pp. 324–338, 2006.
[34]  D. J. Farrar, K. Bourque, C. P. Dague, C. J. Cotter, and V. L. Poirier, “Design features, developmental status, and experimental results with the heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor,” ASAIO Journal, vol. 53, no. 3, pp. 310–315, 2007.
[35]  G. B. Bearnson, G. B. Jacobs, J. Kirk, P. S. Khanwilkar, K. E. Nelson, and J. W. Long, “HeartQuest ventricular assist device magnetically levitated centrifugal blood pump,” Artificial Organs, vol. 30, no. 5, pp. 339–346, 2006.
[36]  C. Schmid, M. Jurmann, D. Birnbaum et al., “Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis,” Journal of Heart and Lung Transplantation, vol. 27, no. 3, pp. 253–260, 2008.
[37]  J. A. LaRose, D. Tamez, M. Ashenuga, and C. Reyes, “Design concepts and principle of operation of the heartware ventricular assist system,” ASAIO Journal, vol. 56, no. 4, pp. 285–289, 2010.
[38]  M. Strueber, A. L. Meyer, D. Malehsa, and A. Haverich, “Successful use of the HeartWare HVAD rotary blood pump for biventricular support,” Journal of Thoracic and Cardiovascular Surgery, 2010.
[39]  R. C. Starling, Y Naka, and A. J. Boyle, “Results of the post-FDA-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS registry. Presented at heart failure society of America,” Journal of the American College of Cardiology. In press.
[40]  D. Esmore, D. Kaye, P. Spratt et al., “A prospective, multicenter trial of the ventrAssist left ventricular assist device for bridge to transplant: safety and efficacy,” Journal of Heart and Lung Transplantation, vol. 27, no. 6, pp. 579–588, 2008.
[41]  M. C. Oz, D. J. Goldstein, P. Pepino et al., “Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices,” Circulation, vol. 92, no. 9, pp. II169–II173, 1995.
[42]  V. Rao, M. C. Oz, M. A. Flannery, K. A. Catanese, M. Argenziano, and Y. Naka, “Revised screening scale to predict survival after insertion of a left ventricular assist device,” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 4, pp. 855–862, 2003.
[43]  W. C. Levy, D. Mozaffarian, D. T. Linker, D. J. Farrar, and L. W. Miller, “Can the seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy?” Journal of Heart and Lung Transplantation, vol. 28, no. 3, pp. 231–236, 2009.
[44]  D. Mozaffarian, S. D. Anker, I. Anand et al., “Prediction of mode of death in heart failure: The Seattle Heart Failure Model,” Circulation, vol. 116, no. 4, pp. 392–398, 2007.
[45]  L. W. Miller, “Patient selection for the use of ventricular assist devices as a bridge to transplantation,” Annals of Thoracic Surgery, vol. 75, no. 6, supplement 1, pp. S66–S71, 2003.
[46]  M. C. Deng, M. Weyand, D. Hammel et al., “Selection and management of ventricular assist device patients: the muenster experience,” Journal of Heart and Lung Transplantation, vol. 19, no. 8, pp. S77–S82, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133