全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Association of Chronic Kidney Disease and Metabolic Syndrome with Incident Cardiovascular Events: Multiethnic Study of Atherosclerosis

DOI: 10.1155/2012/806102

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. There is an association between chronic kidney disease (CKD) and metabolic syndrome (MetS). We examined the joint association of CKD and MetS with incident cardiovascular (CVD) events in the Multiethnic Study of Atherosclerosis (MESA) cohort. Methods. We analyzed 2,283 Caucasians, 363 Chinese, 1,449 African-Americans, and 1,068 Hispanics in the MESA cohort. CKD was defined by cystatin C estimated glomerular filtration rate ≤ 60 mL/min/1.73?m2 and MetS was defined by NCEP criteria. Cox proportional regression adjusting for age, ethnicity, gender, study site, education, income, smoking, alcohol use, physical activity, and total and LDL cholesterol was performed to assess the joint association of CKD and MetS with incident CVD events. Participants were divided into four groups by presence of CKD and/or MetS and compared to the group without CKD and MetS (CKD?/MetS?). Tests for additive and multiplicative interactions between CKD and MetS and prediction of incident CVD were performed. Results. During follow-up period of 5.5 years, 283 participants developed CVD. Multivariate Cox regression analysis demonstrated that CKD and MetS were independent predictors of CVD (hazard ratio, 2.02 for CKD, and 2.55 for MetS). When participants were compared to the CKD?/MetS? group, adjusted HR for the CKD+/MetS+ group was 5.56 (95% CI 3.72–8.12). There was no multiplicative interaction between CKD and MetS ( ); however, there was presence of additive interaction. The relative excess risk for additive interaction (RERI) was 2.73, , and the attributable portion (AP) was 0.49 (0.24–0.74). Conclusion. Our findings illustrate that the combination of CKD and MetS is a strong predictor of incident clinical cardiovascular events due to presence of additive interaction between CKD and MetS. 1. Introduction A large percentage of the US population (10%) suffers from chronic kidney disease (CKD) [1] which is associated with metabolic syndrome [2–4]. Metabolic syndrome (MetS) is a construct of physical and laboratory anomalies that confers a higher risk for diabetes mellitus, cardiovascular events and mortality. The National Cholesterol Education Program Adult Treatment Panel (ATP III) criteria define MetS as having at least three of the following: abdominal or central obesity; high triglyceride levels; low high-density lipoprotein (HDL) cholesterol; hyperglycemia; hypertension [5], which has high prevalence in the US [6]. Both CKD [7–9] and MetS [10, 11] have been shown to be independently associated with increased cardiovascular events and mortality, and studies suggest

References

[1]  J. Coresh, D. Byrd-Holt, B. C. Astor et al., “Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 180–188, 2005.
[2]  J. Chen, P. Muntner, L. L. Hamm et al., “The metabolic syndrome and chronic kidney disease in U.S. adults,” Annals of Internal Medicine, vol. 140, no. 3, pp. 167–I39, 2004.
[3]  M. Kurella, J. C. Lo, and G. M. Chertow, “Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults,” Journal of the American Society of Nephrology, vol. 16, no. 7, pp. 2134–2140, 2005.
[4]  M. P. Alexander, T. V. Patel, Y. M. K. Farag, A. Florez, H. G. Rennke, and A. K. Singh, “Kidney pathological changes in metabolic syndrome: a cross-sectional study,” American Journal of Kidney Diseases, vol. 53, no. 5, pp. 751–759, 2009.
[5]  J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001.
[6]  E. S. Ford, W. H. Giles, and W. H. Dietz, “Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey,” Journal of the American Medical Association, vol. 287, no. 3, pp. 356–359, 2002.
[7]  J. H. Ix, M. G. Shlipak, G. M. Chertow, and M. A. Whooley, “Association of cystatin C with mortality, cardiovascular events, and incident heart failure among persons with coronary heart disease: data from the Heart and Soul Study,” Circulation, vol. 115, no. 2, pp. 173–179, 2007.
[8]  A. S. Go, G. M. Chertow, D. Fan, C. E. McCulloch, and C. Y. Hsu, “Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization,” The New England Journal of Medicine, vol. 351, no. 13, pp. 1296–1370, 2004.
[9]  W. Koenig, D. Twardella, H. Brenner, and D. Rothenbacher, “Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate,” Clinical Chemistry, vol. 51, no. 2, pp. 321–327, 2005.
[10]  H. M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002.
[11]  A. S. Gami, B. J. Witt, D. E. Howard et al., “Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies,” Journal of the American College of Cardiology, vol. 49, no. 4, pp. 403–414, 2007.
[12]  M. G. Shlipak, L. F. Fried, M. Cushman et al., “Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors,” Journal of the American Medical Association, vol. 293, no. 14, pp. 1737–1745, 2005.
[13]  R. N. Foley, C. Wang, and A. J. Collins, “Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study,” Mayo Clinic Proceedings, vol. 80, no. 10, pp. 1270–1277, 2005.
[14]  K. C. Chiu, A. Chu, V. L. W. Go, and M. F. Saad, “Hypovitaminosis D is associated with insulin resistance and β cell dysfunction,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 820–825, 2004.
[15]  S. Williams, K. Malatesta, and K. Norris, “Vitamin D and chronic kidney disease,” Ethnicity & disease, vol. 19, no. 4, pp. S5–8, 2009.
[16]  P. S. Leung and M. C. Chappell, “A local pancreatic renin-angiotensin system: endocrine and exocrine roles,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 6, pp. 838–846, 2003.
[17]  T. Lau, P. O. Carlsson, and P. S. Leung, “Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets,” Diabetologia, vol. 47, no. 2, pp. 240–248, 2004.
[18]  A. B?kenkamp, M. Domanetzki, R. Zinck, G. Schumann, D. Byrd, and J. Brodehl, “Cystatin C—a new marker of glomerular filtration rate in children independent of age and height,” Pediatrics, vol. 101, no. 5, pp. 875–881, 1998.
[19]  D. J. Newman, H. Thakkar, R. G. Edwards et al., “Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine,” Kidney International, vol. 47, no. 1, pp. 312–318, 1995.
[20]  M. G. Shlipak, M. J. Sarnak, R. Katz et al., “Cystatin C and the risk of death and cardiovascular events among elderly persons,” The New England Journal of Medicine, vol. 352, no. 20, pp. 2049–2060, 2005.
[21]  M. G. Shlipak, M. J. Sarnak, R. Katz et al., “Cystatin-C and mortality in elderly persons with heart failure,” Journal of the American College of Cardiology, vol. 45, no. 2, pp. 268–271, 2005.
[22]  L. A. Stevens, J. Coresh, C. H. Schmid et al., “Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD,” American Journal of Kidney Diseases, vol. 51, no. 3, pp. 395–406, 2008.
[23]  D. E. Bild, D. A. Bluemke, G. L. Burke et al., “Multi-ethnic study of atherosclerosis: objectives and design,” American Journal of Epidemiology, vol. 156, no. 9, pp. 871–881, 2002.
[24]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.
[25]  W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972.
[26]  E. J. Erlandsen, E. Randers, and J. H. Kristensen, “Evaluation of the dade behring N latex cystatin C assay on the dade behring nephelometer II system,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 59, no. 1, pp. 1–8, 1999.
[27]  S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005.
[28]  R. Li and L. Chambless, “Test for additive interaction in proportional hazards models,” Annals of Epidemiology, vol. 17, no. 3, pp. 227–236, 2007.
[29]  R. Deo, C. L. Wassel Fyr, L. F. Fried et al., “Kidney dysfunction and fatal cardiovascular disease-an association independent of atherosclerotic events: results from the Health, Aging, and Body Composition (Health ABC) study,” American Heart Journal, vol. 155, no. 1, pp. 62–68, 2008.
[30]  Y. Iwashima, T. Horio, K. Kamide et al., “Additive interaction of metabolic syndrome and chronic kidney disease on cardiac hypertrophy, and risk of cardiovascular disease in hypertension,” American Journal of Hypertension, vol. 23, no. 3, pp. 290–298, 2010.
[31]  D. Martins, C. Ani, D. Pan, O. Ogunyemi, and K. Norris, “Renal dysfunction, metabolic syndrome and cardiovascular disease mortality,” Journal of Nutrition and Metabolism, vol. 2010, Article ID 167162, 8 pages, 2010.
[32]  L. Risch, R. Herklotz, A. Blumberg, and A. R. Huber, “Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients,” Clinical Chemistry, vol. 47, no. 11, pp. 2055–2059, 2001.
[33]  P. Wiesli, B. Schwegler, G. A. Spinas, and C. Schmid, “Serum cystatin C is sensitive to small changes in thyroid function,” Clinica Chimica Acta, vol. 338, no. 1-2, pp. 87–90, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133